Let a , b , c be complex numbers satisfying
( a + 1 ) ( b + 1 ) ( c + 1 ) = 1
( a + 2 ) ( b + 2 ) ( c + 2 ) = 2
( a + 3 ) ( b + 3 ) ( c + 3 ) = 3
Find ( a + 4 ) ( b + 4 ) ( c + 4 ) .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
superbbb...approach
Great approach. This was my first thought too :)
Did the same way!
Let f ( x ) = ( x + a ) ( x + b ) ( x + c ) = x 3 + ( a + b + c ) x 2 + ( a b + b c + c a ) x + a b c = x 3 + p x 2 + q x + r where p = a + b + c , q = a b + b c + c a and r = a b c . Now f ( 1 ) = 1 ⇒ p + q + r = 0 − − − − − − − − − ( 1 ) f ( 2 ) = 2 ⇒ 4 p + 2 q + r = − 6 − − − − − − − ( 2 ) f ( 3 ) = 3 ⇒ 9 p + 3 q + 4 = − 2 4 − − − − − − − ( 3 ) S o l v i n g ( 1 ) , ( 2 ) a n d ( 3 ) , p = − 6 , q = 1 2 , r = − 6 . H e n c e f ( x ) = x 3 − 6 x 2 + 1 2 x − 6 . T h u s f ( 4 ) = 1 0
I solved it this way :)
compact and correct!
Firstly, let's expand all of the equations.
a b c + a b + a c + b c + a + b + c + 1 = 1 ( I )
a b c + 2 a b + 2 a c + 2 b c + 4 a + 4 b + 4 c + 8 = 2 ( I I )
a b c + 3 a b + 3 a c + 3 b c + 9 a + 9 b + 9 c + 2 7 = 3 ( I I I )
Subtracting ( I ) from ( I I ) and ( I I ) from ( I I I ) , we get:
a b + a c + b c + 3 a + 3 b + 3 c + 7 = 1 ( I V )
a b + a c + b c + 5 a + 5 b + 5 c + 1 9 = 1 ( V )
Subtracting ( I V ) from ( V ) :
2 a + 2 b + 2 c + 1 2 = 0
a + b + c = − 6 ( V I )
Substituting ( V I ) in ( I V ) , we get:
a b + a c + b c + 3 ∗ − 6 + 7 = 1
a b + a c + b c − 1 8 + 7 = 1
a b + a c + b c = 1 2 ( V I I )
Substituting ( V I ) and ( V I I ) in ( I ) :
a b c + 1 2 − 6 + 1 = 1
a b c = − 6 ( V I I I )
Now we have all of the information we need:
( a + 4 ) ( b + 4 ) ( c + 4 ) = a b c + 4 ( a b + a c + b c ) + 1 6 ( a + b + c ) + 6 4
= − 6 + 4 ∗ 1 2 + 1 6 ∗ − 6 + 6 4 = − 6 + 4 8 − 9 6 + 6 4 = 1 1 2 − 1 0 2 = 1 0 .
I did it this way except I noticed that there were the 1st, 2nd, and 3rd symmetric sums so I rewrote them each as e1, e2, and e3.
i did the same way and find answer.
I did the same way..!!
This is how I was solving it but got 4 3 wrong. I had it 256 instead of 64.
Let a + 1 = x , b + 1 = y , and c + 1 = z . So x y z = 1 , ( x + 1 ) ( y + 1 ) ( z + 1 ) = 2 , ( x + 2 ) ( y + 2 ) ( z + 2 ) = 3 , and now I want to find ( x + 3 ) ( y + 3 ) ( z + 3 ) .
Expand ( x + 1 ) ( y + 1 ) ( z + 1 ) = 2 and ( x + 2 ) ( y + 2 ) ( z + 2 ) = 3 to x y z + x y + x z + y z + x + y + z + 1 = 2 , and x y z + 2 x y + 2 x z + 2 y z + 4 x + 4 y + 4 x + 8 = 3 .
Then substitute x y z for 1 and simplify to get x y + y z + x z + x + y + z = 0 , and x y + x z + y z + 2 x + 2 y + 2 z = − 3 .
Subtract the first from the second two to get: x + y + z = − 3 .
Then get x y + x z + y z = 3 by sustituting x + y + z = − 3 into the first equation. Expand what we want to find to get: ( x + 3 ) ( y + 3 ) ( z + 3 ) = x y z + 3 ( x y + x z + y z ) + 9 ( x + y + z ) + 2 7 . Substitute out x y z , x y + y z + x z , and x + y + z . 1 + 3 ( 3 ) + 9 ( − 3 ) + 2 7 = 1 0 .
Let x = a + 2 , y = b + 2 , and z = c + 2 . So the system is equivalent to ( x − 1 ) ( y − 1 ) ( z − 1 ) = 1 ; x y z = 2 ; ( x + 1 ) ( y + 1 ) ( z + 1 ) = 3 , 2 − ( x y + y z + z x ) + x + y + z − 1 = 1 , x y z = 2 ; 2 + ( x y + y z + z x ) + ( x + y + z ) + 1 = 3 , ( x + y + z ) − ( x y + y z + z x ) = 0 , x y z = 2 ; ( x + y + z ) + ( x y + y z + z x ) = 0 , x + y + z = x y + y z + z x = 0 ; x y z = 2 . Now, ( a + 4 ) ( b + 4 ) ( c + 4 ) = ( x + 2 ) ( y + 2 ) ( z + 2 ) = x y z + 2 ( x y + y z + z x ) + 4 ( x + y + z ) + 8 = 2 + 2 ⋅ 0 + 4 ⋅ 0 + 8 = 1 0 .
Use x = a + 2 , y = b + 2 , z = c + 2 so the equation becomes
( x − 1 ) ( y − 1 ) ( z − 1 ) = 1 ( e q . 1 )
x y z = 2 ( e q . 2 )
( x + 1 ) ( y + 1 ) ( z + 1 ) = 3 ( e q . 3 )
Expanding the first and the third equations gives:
( e q . 1 ) : x y z − x z − x y − y z + x + y + z − 1 = 1
( e q . 3 ) : x y z + x z + x y + y z + x + y + z + 1 = 3
Substitution and rearranging:
( e q . 1 ) : 2 − ( x z + x y + y z ) + x + y + z = 2
( e q . 2 ) : 2 + ( x z + x y + y x ) + x + y + z = 2
Subtracting ( ( e q . 3 ) − ( e q . 1 ) yields: 2 ( x z + x y + y z ) = 0 , so x z + x y + y z = 0
Substitute this value back to either the first or the third equation:
( e q . 1 ) : 2 − ( x z + x y + y z ) + x + y + z = 2 ⟶ 2 − ( 0 ) + x + y + z = 2
Therefore x + y + z = 0
We are asked to find ( a + 4 ) ( b + 4 ) ( c + 4 ) , which is ( x + 2 ) ( y + 2 ) ( z + 2 )
Expanding gives: x y z + 2 ( x z + x y + y z ) + 4 ( x + y + z ) + 8 = 2 + 2 ( 0 ) + 4 ( 0 ) + 8 = 1 0
Problem Loading...
Note Loading...
Set Loading...
Let P ( x ) be a monic polynomial with roots a , b and c : P ( x ) = ( x − a ) ( x − b ) ( x − c )
We know that:
− P ( − 1 ) = ( a + 1 ) ( b + 1 ) ( c + 1 ) = 1 − P ( − 2 ) = ( a + 2 ) ( b + 2 ) ( c + 2 ) = 2 − P ( − 3 ) = ( a + 3 ) ( b + 3 ) ( c + 3 ) = 3
By inspection, we say that P ( x ) = ( x + 1 ) ( x + 2 ) ( x + 3 ) + x .
So,
− P ( − 4 ) = = = ( a + 4 ) ( b + 4 ) ( c + 4 ) − ( ( − 4 + 1 ) ( − 4 + 2 ) ( − 4 + 3 ) + ( − 4 ) ) 1 0