An algebra problem by Sourasish Karmakar

Algebra Level 3

1 + 3 4 + 3 5 4 8 + 3 5 7 4 8 12 + = ? \large 1 + \frac34 + \frac{3\cdot 5}{4\cdot 8} + \frac{3\cdot 5\cdot 7}{4\cdot 8\cdot 12} + \cdots = \, ?

e 8 e^8 8 8 8 \sqrt8 8 e 8^e

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ankit Kumar Jain
May 22, 2017

( 1 x ) n = 1 + n x + n ( n + 1 ) 2 ! x 2 + + n ( n + 1 ) ( n + 2 ) ( n + r 1 ) r ! x r + terms (1-x)^{-n}=1+nx+\dfrac{n(n+1)}{2!}x^2+\cdots+\dfrac{n(n+1)(n+2)\cdots (n+r-1)}{r!}x^{r}+\cdots\infty\quad\text{terms}


1 + 3 4 + 3 5 4 8 + 3 5 7 4 8 12 + 1+\dfrac34+\dfrac{3\cdot5}{4\cdot8}+\dfrac{3\cdot5\cdot7}{4\cdot8\cdot12}+\cdots

T r + 1 = 3 5 7 ( 2 r + 1 ) 4 r × r ! \Rightarrow T_{r+1} = \dfrac{3\cdot5\cdot7\cdots(2r+1)}{4^{r}\times{r!}}

T r + 1 = 3 5 7 ( 2 r + 1 ) 2 r × r ! × 1 2 r \Rightarrow T_{r+1} = \dfrac{3\cdot5\cdot7\cdots(2r+1)}{2^{r}\times{r!}}\times{\dfrac1{2^{r}}}

T r + 1 = 3 2 5 2 7 2 ( 2 r + 1 ) 2 r ! × ( 1 2 ) r \Rightarrow T_{r+1} = \dfrac{\dfrac32\cdot\dfrac52\cdot\dfrac72\cdots\dfrac{(2r+1)}2}{r!}\times{\left(\dfrac12\right)^{r}}

T r + 1 = 3 2 ( 3 2 + 1 ) ( 3 2 + 2 ) ( 3 2 + r 1 ) r ! × ( 1 2 ) r \Rightarrow T_{r+1} = \dfrac{\dfrac32\cdot\left(\dfrac32 + 1\right)\cdot\left(\dfrac32 + 2\right)\cdots\left(\dfrac32 + r-1\right)}{r!}\times{\left(\dfrac12\right)^r}


Comparing with the above written binomial expansion , we get that the expression in the question is basically the expansion of ( 1 x ) n (1-x)^{-n} where x = 1 2 , n = 3 2 \boxed{x = \dfrac12 , n = \dfrac32}


So our answer is 2 2 \boxed{2\sqrt{2}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...