An algebra problem by Sourasish Karmakar

Algebra Level 3

If a b + c + b c + a + c a + b = 1 \dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=1 , then find the value of a 2 b + c + b 2 c + a + c 2 a + b \dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b} .

3 -1 1 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Viki Zeta
Sep 8, 2016

a b + c + b c + a + c a + b = 1 Multiply both sides by : ( a + b + c ) ( a + b + c ) [ a b + c + b c + a + c a + b ] = 1 ( a + b + c ) a ( a + b + c ) b + c + b ( a + b + c ) c + a + c ( a + b + c ) a + b = ( a + b + c ) a ( a + ( b + c ) b + c ) + b ( ( b + ( c + a ) c + a ) ) + c ( ( c + ( a + b ) a + b ) ) = ( a + b + c ) a ( a b + c + ( b + c b + c ) ) + b ( b c + a + ( c + a c + a ) ) + c ( c a + b + ( a + b a + b ) ) = ( a + b + c ) a ( a b + c + 1 ) + b ( b c + a + 1 ) + c ( c a + b + 1 ) = ( a + b + c ) a 2 b + c + a + b 2 c + a + b + c 2 a + b + c = ( a + b + c ) a 2 b + c + b 2 c + a + c 2 a + b + ( a + b + c ) = ( a + b + c ) a 2 b + c + b 2 c + a + c 2 a + b = 0 \dfrac{a}{b+c} + \dfrac{b}{c+a} + \dfrac{c}{a+b} = 1\\ \color{#3D99F6}{\text{Multiply both sides by : }} \color{#D61F06}{(a+b+c)} \\ \color{#D61F06}{(a+b+c)}[\dfrac{a}{b+c} + \dfrac{b}{c+a} + \dfrac{c}{a+b}] = 1\color{#D61F06}{(a+b+c)} \\ \dfrac{a\color{#D61F06}{(a+b+c)}}{b+c} + \dfrac{b\color{#D61F06}{(a+b+c)}}{c+a} + \dfrac{c\color{#D61F06}{(a+b+c)}}{a+b} = (a+b+c) \\ a(\dfrac{a+(\color{#3D99F6}{b+c})}{b+c}) + b(\dfrac{(b+(\color{#3D99F6}{c+a})}{c+a})) + c(\dfrac{(c+(\color{#3D99F6}{a+b})}{a+b})) = (a+b+c) \\ a(\dfrac{a}{b+c} + (\color{#D61F06}{\dfrac{b+c}{b+c}})) + b(\dfrac{b}{c+a} + (\color{#D61F06}{\dfrac{c+a}{c+a}})) + c(\dfrac{c}{a+b} + (\color{#D61F06}{\dfrac{a+b}{a+b}})) = (a+b+c) \\ a(\dfrac{a}{b+c} + 1) + b(\dfrac{b}{c+a} + 1) + c(\dfrac{c}{a+b} + 1) = (a+b+c) \\ \dfrac{a^2}{b+c} + \color{#3D99F6}{a} + \dfrac{b^2}{c+a} + \color{#3D99F6}{b} + \dfrac{c^2}{a+b} + \color{#3D99F6}{c} = \color{#D61F06}{(a+b+c)} \\ \dfrac{a^2}{b+c} + \dfrac{b^2}{c+a} + \dfrac{c^2}{a+b} + \color{#D61F06}{(a+b+c)} = \color{#D61F06}{(a+b+c)} \\ \dfrac{a^2}{b+c} + \dfrac{b^2}{c+a} + \dfrac{c^2}{a+b} = 0

Note : You can also do this process in reverse, from last step to first step :)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...