A number theory problem by Subhendu Biswas

The number of ordered pairs of integers ( x , y ) (x,y) satisfying the equation x 2 + 6 x + y 2 = 4 x^2+6x+y^2=4 is?


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Aug 20, 2015

x 2 + 6 x + y 2 = 4 x 2 + 6 x + 9 9 + y 2 = 4 ( x + 3 ) 2 + y 2 = 13 \begin{aligned} x^2+6x+y^2 & = 4 \\ x^2 + 6x + 9 - 9 + y^2 & = 4 \\ (x+3)^2 + y^2 & = 13 \\ \end{aligned}

There are only a pair of squares that sum up to 13 13 : 2 2 + 3 2 = 13 2^2+3^2 = 13 . Therefore,

{ x + 3 = ± 2 x = 1 , 5 { ( 1 , ± 3 ) ( 5 , ± 3 ) x + 3 = ± 3 x = 0 , 6 { ( 0 , ± 2 ) ( 6 , ± 2 ) \begin{cases} x+3 = \pm 2 & \Rightarrow x = -1, - 5 & \Rightarrow \begin{cases} (-1, \pm 3) \\ (-5,\pm 3) \end{cases} \\ x+3 = \pm 3 & \Rightarrow x = 0, - 6 & \Rightarrow \begin{cases} (0, \pm 2) \\ (-6,\pm 2) \end{cases} \end{cases}

There are 8 \boxed{8} ordered pairs of integer ( x , y ) (x,y) that satisfy the equation.

Moderator note:

Good observation about the sum of squares.

Tom Engelsman
Sep 20, 2017

Let us solve for x in terms of y using the Quadratic Formula

x 2 + 6 x + ( y 2 4 ) = 0 x = 6 ± 6 2 4 ( 1 ) ( y 2 4 ) 2 = 3 ± 13 y 2 . x^2 + 6x + (y^2 - 4) = 0 \Rightarrow x = \frac{-6 \pm \sqrt{6^2 - 4(1)(y^2 - 4)}}{2} = -3 \pm \sqrt{13 - y^2}.

In order for x to be an integer, we require the discriminant to be a non-negative perfect square that only admits integer values for y. For 13 y 2 0 13 - y^2 \ge 0 , we require y = 0 ; ± 1 ; ± 2 ; ± 3 y = 0; \pm 1; \pm 2; \pm 3 . Only y = ± 2 , ± 3 y = \pm 2, \pm 3 yield perfect square values of these seven choices. Our total allowable set includes 8 \boxed{8} integral pairs:

( x , y ) = ( 0 , ± 2 ) ; ( 6 , ± 2 ) ; ( 1 , ± 3 ) ; ( 5 , ± 3 ) . (x,y) = (0, \pm 2); (-6, \pm 2); (-1, \pm 3); (-5, \pm 3).

Nguyen Thanh Long
Aug 20, 2015

We may rewrite the expression as the following exp: ( x + 3 ) 2 = 13 y 2 3 y 3 (x+3)^2=13-y^2 \rightarrow -3 \le y \le 3 ] It is very easy to get: 8 \boxed{8} roots

Moderator note:

There's a slightly simpler approach.

Hint : x 2 = ( x ) 2 x^2 = (-x)^2 . Sum of two perfect squares equals to 13. What they must be?

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...