An algebra problem by Subrata Dutta

Algebra Level pending

M=8^2+9^2+10^2+.....14^2+22^2+23^2+24^2+.....+28^2+.....................+120^2+121^2+...........+126^2 it can be written as , M/7^2=a+b/7 , then , a+b=?


The answer is 7009.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Subrata Dutta
Jan 7, 2015

S=-[1^2+2^2+.....+r^2]+[(r+1)^2+(r+2)^2+......+(2r)^2]-........[(nr+1)^2+(nr+2)^2+........(nr+r)^2] =4r^3[i+1/4r+1/2] where , i=0,1,2,3,...... and 'n' must be odd and also , i=(n-1)/2 so, here, putting, r=7, n=17, we get, i=8, therefore S=-[1^2+2^2+......7^2]-[8^2+9^2+......+14^2]+..............[120^2+121^2+......+126^2] =4 7^3[8+1/(4 7)+1/2]=11711 again T=1^2+2^2+3^2+..........................+126^2=674751 so, M=(S+T)/2=343231, M/7^2=7004+5/7, a=7004, b=5, so the ans is, a+b=7004+5=7009

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...