An algebra problem by Sukino

Algebra Level 4

Let x x and y y be real numbers such that x 2 + x y + y 2 = 9 x^2 + xy + y^2=9 . Find the sum of the maximum value and the minimum value of the expression x 2 + y 2 x^2 + y^2 .


The answer is 24.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Dec 25, 2016

Since x 2 x^2 and y 2 y^2 are positive real, we can apply RMS-AM inequality and AM-GM inequality as follows.

RMS-AM inequality:

x 2 + y 2 2 x 4 + y 4 2 Equality occurs when x = ± 3 , y = 3 x 2 = y 2 , x 2 + x y + y 2 = 9 81 + 81 2 = 9 x 2 + y 2 18 ( maximum ) \begin{aligned} \frac {x^2+y^2}2 & \le \sqrt {\frac {x^4+y^4}2} & \small \color{#3D99F6} \text{Equality occurs when } x = \pm 3, \ y = \mp 3 \implies x^2=y^2, \ x^2+xy+y^2 = 9 \\ & \le \sqrt{\frac {81+81}2} = 9 \\ \implies x^2+y^2 & \le 18 \quad \small \color{#3D99F6} (\text{maximum}) \end{aligned}

AM-GM inequality:

x 2 + y 2 2 x 2 y 2 = 2 x y Equality occurs when x = y = 3 x 2 + x y + y 2 = 9 6 ( minimum ) \begin{aligned} x^2+y^2 & \ge 2\sqrt{x^2y^2} = 2xy & \small \color{#3D99F6} \text{Equality occurs when } x = y = \sqrt 3 \implies x^2+xy+y^2 = 9 \\ & \ge 6 \quad \small \color{#3D99F6} (\text{minimum}) \end{aligned}

maximum + minimum = 18 + 6 = 24 \implies \text{maximum + minimum} = 18+6=\boxed{24}

Thank's for the solution. Good work

I Gede Arya Raditya Parameswara - 4 years, 5 months ago

Why x⁴ is 81?

I Gede Arya Raditya Parameswara - 4 years, 5 months ago

Log in to reply

x = 3 x=3 , x 4 = 3 4 = 81 x^4=3^4=81 .

Chew-Seong Cheong - 4 years, 5 months ago
Kushal Bose
Dec 25, 2016

x 2 + x y + y 2 = 9 ( x y ) 2 + 2 x y + x y = 9 ( x y ) 2 + 3 x y = 9 ( x y ) 2 = 9 3 x y 0 x y 3 x^2+xy+y^2=9 \\ (x-y)^2+2xy+xy=9 \\ (x-y)^2+3xy=9 \\ (x-y)^2=9-3xy \geq 0 \\ xy \leq 3

Equality holds when x = y x=y

So , minimm value is x 2 + y 2 = 9 x y = 9 3 = 6 x^2+y^2=9-xy=9-3=6

x 2 + x y + y 2 = 9 ( x + y ) 2 2 x y + x y = 9 ( x + y ) 2 x y = 9 ( x + y ) 2 = 9 + x y 0 x y 9 x^2+xy+y^2=9 \\ (x+y)^2-2xy+xy=9 \\ (x+y)^2-xy=9 \\ (x+y)^2=9+xy \geq 0 \\ xy \geq -9

Equality holds when x = y x=-y

So,maximum value of x 2 + y 2 = 9 x y = 9 + 9 = 18 x^2+y^2=9-xy=9+9=18

Good solution

I Gede Arya Raditya Parameswara - 4 years, 5 months ago
Archit Tripathi
Dec 30, 2016

The given curve is an ellipse with centre at the origin, so any point ( r cos θ , r sin θ ) (r\cos\theta, r\sin\theta) can be taken on it

which means x 2 + y 2 = ( r cos θ ) 2 + ( r sin θ ) 2 = r 2 x^{2} + y^{2} = (r\cos\theta)^{2} + (r\sin\theta)^{2} = r^{2} . after satisfying this point on the curve it yields

r 2 = 18 2 sin 2 θ r^{2} = \frac{18}{2 - \sin2\theta}

which gives max. r 2 = 18 r^{2} = 18 and min. r 2 = 6 r^{2} = 6 \Rightarrow 18 + 6 = 24 18 + 6 = \boxed{24} .

Good solution!

Steven Jim - 4 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...