This Sum Is That; That Sum Is This

Algebra Level 3

For distinct numbers p p and q q , consider an arithmetic progression such that

  • the sum of the first p p terms is equal to q q , and
  • the sum of the first q q terms is equal to p p .

What is the sum of the first p + q p+ q terms?

0 0 p + q p+q p q p-q ( p + q ) -(p+q)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Viki Zeta
Oct 12, 2016

Relevant wiki: Arithmetic Progression Sum

Recall that the n th n^\text{th} of an arithmetic progression is denoted by T n = a + ( n 1 ) d T_n = a + (n-1)d , where a a is the first term and d d is the common difference. And the sum of the first n th n^\text{th} terms of this progression is S n = n 2 [ 2 a + ( n 1 ) d ] S_n = \dfrac n2 [ 2a +(n-1) d ] .

We have

S p = q p 2 ( 2 a + ( p 1 ) d ) = q 2 a + ( p 1 ) d = 2 q p S q = p 2 a + ( q 1 ) d = 2 p q ( ) 2 a + ( p 1 ) d = 2 q p ( q 1 ) d ( p 1 ) d = 2 p q 2 q p d ( q p ) = 2 ( p 2 q 2 ) p q d ( p q ) = 2 ( p + q ) ( p q ) p q d = 2 ( p + q ) p q d = 2 ( p + q ) p q S p + q = ( p + q ) 2 ( 2 a + ( ( p 1 ) + q ) d ) = ( p + q ) 2 ( 2 a + ( p 1 ) d + q d ) = ( p + q ) 2 ( 2 q p + q 2 ( p + q ) p q ) = ( p + q ) 2 ( 2 q p 2 p + 2 q p ) = p + q 2 ( 2 p p ) = ( p + q ) S_p = q \\ \dfrac{p}{2} \left(2a + (p-1)d\right) = q \\ \boxed{2a + \left(p-1\right)d = \dfrac{2q}{p} }\\ S_q = p \\ \boxed{2a + \left(q-1\right)d = \dfrac{2p}{q}} \\ (-)2a + \left(p-1\right)d = \dfrac{2q}{p} \implies \left(q-1\right)d - \left(p-1\right)d = \dfrac{2p}{q} - \dfrac{2q}{p} \\ d(q-p) = \dfrac{2\left(p^2 - q^2\right)}{pq} \\ -d(p-q) = 2\dfrac{\left(p+q\right)\left(p-q\right)}{pq} \\ -d = \dfrac{2\left(p+q\right)}{pq} \\ d = \dfrac{-2\left(p+q\right)}{pq} \\ S_{p+q} = \dfrac{\left(p+q\right)}{2}\left(2a + \left(\left(p-1\right)+q\right)d\right) \\ = \dfrac{\left(p+q\right)}{2}\left(2a + \left(p-1\right)d +qd\right) \\ = \dfrac{\left(p+q\right)}{2}\left(\dfrac{2q}{p} + q\dfrac{-2\left(p+q\right)}{pq} \right) \\ = \dfrac{\left(p+q\right)}{2}\left(\dfrac{2q}{p} - \dfrac{2p+2q}{p}\right) \\ = \dfrac{p+q}{2} \left(\dfrac{-2p}{p}\right) \\ = -(p+q)

how did you get the first term 'a'?

Sunny Dhondkar - 4 years, 8 months ago

Log in to reply

First term is always a a or a 1 a_1 . It's the general form of an AP

Viki Zeta - 4 years, 8 months ago

Log in to reply

i meant that you didn't show how you get the first term.. (procedure)

Sunny Dhondkar - 4 years, 8 months ago

Mistake: d ( p q ) = 2 ( p + q ) ( p q ) p q d = 2 ( p + q ) p q -d(p-q) = 2\dfrac{(p+q)(p-q)}{pq} \implies -d = \dfrac{2(p+q)}{pq} , iff p q p \neq q , since division by 0 0 is not allowed.

If p = q p = q we have a counterexample, which you can see from my report.

Jesse Nieminen - 4 years, 8 months ago

Total of terms of this progression is : S n = a n + d 2 ( n 2 n ) S_n =an+\dfrac d 2 *(n^2 - n) .

We have

S p = q a p + d 2 ( p 2 p ) = q . . . . . ( 1 ) S q = p a q + d 2 ( q 2 q ) = p . . . . . ( 2 ) F r o m ( 1 ) a n d ( 2 ) , e l e m i n a t i n g a w e g e t ( q p ) d = 2 p q 2 q p = 2 ( p + q ) ( p q ) p q . S i n c e p q , d p q = 2 ( p + q ) . . . . . ( 3 ) A l s o ( 1 ) + ( 2 ) g i v e s S q + S p = q + p = a ( p + q ) + d 2 ( p 2 + q 2 ) d 2 ( p + q ) = p + q . . . . . ( 4 ) S p + q = a ( p + q ) + d 2 ( p 2 + 2 p q + q 2 ) d 2 ( p + q ) = p + q S o f r o m ( 4 ) a n d ( 3 ) , w e g e t , S p + q = a ( p + q ) + d 2 ( p 2 + q 2 ) d 2 ( p + q ) + p q d = p + q + p q d S p + q = p + q 2 ( p + q ) = ( p + q ) S_p = q \implies\ \ \ \ ap+ \dfrac d 2 * (p^2 - p) = q.....(1) \\ S_q = p \implies\ \ \ \ \ aq+ \dfrac d 2 * (q^2 - q)= p.....(2) \\ From\ (1)\ and\ (2),\ \ eleminating\ a\ we\ get\\ (q -p)d = \dfrac{2p}{q} - \dfrac{2q}{p}=2*\dfrac{(p+q)*(p-q)}{pq}.\\ Since\ p\neq q,\ \ \ dpq = - 2*(p+q) .....(3)\\ Also\ (1)+(2)\ gives\ S_q+S_p=q+p=a(p+q)+{ \color{#3D99F6} {\dfrac d 2 *(p^2+q^2) } } \ - \ \dfrac d 2 * (p+q) = p+q.....(4) \\ S_{p+q} = a(p+q)+{ \color{#3D99F6} {\dfrac d 2 *(p^2+2pq+q^2) } } \ - \ \dfrac d 2 * (p+q) = p+q \\ So\ from \ (4)\ and\ (3), we\ get,\\ S_{p+q}=a(p+q)+{ \color{#3D99F6} {\dfrac d 2 *(p^2+q^2) } } \ - \ \dfrac d 2 * (p+q) {\color{#3D99F6}{+pqd}}= p+q+pqd\\ \therefore\ S_{p+q}=p+q -2(p+q)=-(p+q)

Niranjan Khanderia - 4 years, 7 months ago
Sunny Dhondkar
Oct 11, 2016

Here is a special hint

This is a very overrated question.

Thomas Jacob - 4 years, 8 months ago
Ankush Gogoi
Oct 16, 2016

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...