An algebra problem by Tan T

Algebra Level 3

3 1 × 2 ( 1 2 ) + 4 2 × 3 ( 1 4 ) + 5 3 × 4 ( 1 8 ) + \dfrac 3{1 \times 2} \left( \dfrac 12 \right) + \dfrac 4{2 \times 3} \left( \dfrac 14 \right) + \dfrac 5{3 \times 4} \left( \dfrac 18 \right) + \cdots

Find the sum of the first 9 terms of the summation above.

511 512 \dfrac{511}{512} 10239 10240 \dfrac{10239}{10240} 5119 5120 \dfrac{5119}{5120} 1023 1024 \dfrac{1023}{1024}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
May 26, 2016

S = 3 1 × 2 ( 1 2 ) + 4 2 × 3 ( 1 4 ) + 5 3 × 4 ( 1 8 ) + + 11 9 × 10 ( 1 2 9 ) = n = 1 9 n + 2 2 n n ( n + 1 ) = n = 1 9 1 2 n ( 1 n + 1 + 2 n ( n + 1 ) ) = n = 1 9 1 2 n ( 1 n + 1 + 2 n 2 n + 1 ) = n = 1 9 1 2 n ( 2 n 1 n + 1 ) = n = 1 9 ( 1 2 n 1 n 1 2 n ( n + 1 ) ) = n = 1 9 1 2 n 1 n n = 2 10 1 2 n 1 n = 1 2 0 1 1 2 9 10 = 1 1 5120 = 5119 5120 \begin{aligned} S & = \frac 3{1 \times 2} \left( \frac 12 \right) + \frac 4{2 \times 3} \left( \frac 14 \right) + \frac 5{3 \times 4} \left( \frac 18 \right) + \cdots + \frac {11}{9 \times 10} \left( \frac 1{2^9} \right) \\ & = \sum_{n=1}^9 \frac{n+2}{2^nn(n+1)} \\ & = \sum_{n=1}^9 \frac 1 {2^n}\left(\frac 1{n+1} + \frac 2{n(n+1)} \right) \\ & = \sum_{n=1}^9 \frac 1 {2^n}\left(\frac 1{n+1} + \frac 2n - \frac 2{n+1} \right) \\ & = \sum_{n=1}^9 \frac 1 {2^n}\left(\frac 2n - \frac 1{n+1} \right) \\ & = \sum_{n=1}^9 \left( \frac 1{2^{n-1}n} - \frac 1{2^n(n+1)} \right) \\ & = \sum_{n=1}^9 \frac 1{2^{n-1}n} - \sum_{n=2}^{10} \frac 1{2^{n-1}n} \\ & = \frac 1{2^0\cdot 1} - \frac 1{2^9\cdot 10} \\ & = 1 - \frac 1{5120} \\ & = \boxed{\dfrac{5119}{5120}} \end{aligned}

thumbs up!

Tan T - 5 years ago

Log in to reply

Thanks, shouldn't you upvote it?. I edited your problem. Hope you learn up LaTex soon. You can see the keystrokes by placing mouse cursors on the formulas.

Chew-Seong Cheong - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...