An algebra problem by Tarit Goswami

Algebra Level 4

1 + 1 1 2 + 1 2 2 + 1 + 1 2 2 + 1 3 2 + 1 + 1 3 2 + 1 4 2 + + 1 + 1 199 9 2 + 1 200 0 2 = ? \small \sqrt{1+\frac 1{1^2} +\frac 1{2^2}} + \sqrt{1+\frac 1{2^2} +\frac 1{3^2}} + \sqrt{1+\frac 1{3^2} + \frac 1{4^2}}+\cdots + \sqrt{1+ \frac 1{1999^2} + \frac 1{2000^2}}= \, ?


The answer is 1999.9995.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Aug 15, 2016

S = n = 1 1999 1 + 1 n 2 + 1 ( n + 1 ) 2 = n = 1 1999 n 2 ( n + 1 ) 2 + ( n + 1 ) 2 + n 2 n 2 ( n + 1 ) 2 = n = 1 1999 n 2 ( n 2 + 2 n + 1 ) 2 + n 2 + 2 n + 1 + n 2 n 2 ( n + 1 ) 2 = n = 1 1999 n 4 + 2 n 3 + 3 n 2 + 2 n + 1 n 2 ( n + 1 ) 2 = n = 1 1999 ( n 2 + n + 1 ) 2 n 2 ( n + 1 ) 2 = n = 1 1999 n 2 + n + 1 n ( n + 1 ) = n = 1 1999 n 2 + n + 1 n 2 + n = n = 1 1999 ( 1 + 1 n ( n + 1 ) ) = n = 1 1999 ( 1 + 1 n 1 n + 1 ) = 1999 + 1 1 1 2000 = 1999 + 1999 2000 = 1999.9995 \begin{aligned} S & = \sum_{n=1}^{1999} \sqrt{1+\frac 1{n^2} + \frac 1{(n+1)^2}} \\ & = \sum_{n=1}^{1999} \sqrt{\frac{n^2(n+1)^2+(n+1)^2+n^2}{n^2(n+1)^2}} \\ & = \sum_{n=1}^{1999} \sqrt{\frac{n^2(n^2+2n+1)^2+n^2+2n+1+n^2}{n^2(n+1)^2}} \\ & = \sum_{n=1}^{1999} \sqrt{\frac{n^4+2n^3+3n^2+2n+1}{n^2(n+1)^2}} \\ & = \sum_{n=1}^{1999} \sqrt{\frac{(n^2+n+1)^2}{n^2(n+1)^2}} \\ & = \sum_{n=1}^{1999} \frac{n^2+n+1}{n(n+1)} \\ & = \sum_{n=1}^{1999} \frac{n^2+n+1}{n^2+n} \\ & = \sum_{n=1}^{1999} \left(1 + \frac 1{n(n+1)} \right) \\ & = \sum_{n=1}^{1999} \left(1 + \frac 1n - \frac 1{n+1} \right) \\ & = 1999 + \frac 11 - \frac 1{2000} \\ & = 1999 + \frac {1999}{2000} \\ & = \boxed{1999.9995} \end{aligned}

Your solution is good... but if we see on the pattern of the n th term then we can see sum of n th terms will be (n^2-1)/n

Tarit Goswami - 4 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...