An algebra problem by vansh gupta

Algebra Level 3

Find the value of 5 + 2 13 3 + 5 2 13 3 \large \sqrt[3]{5 + 2\sqrt{13}} + \sqrt[3]{5 - 2\sqrt{13}} .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let x = a + b x = a + b where a = 5 + 2 13 3 a = \sqrt[3]{5 + 2\sqrt{13}} and b = 5 2 13 3 b = \sqrt[3]{5 - 2\sqrt{13}} . Then

x 3 = ( a + b ) 3 = a 3 + 3 a 2 b + 3 a b 2 + b 3 = a 3 + b 3 + 3 a b ( a + b ) = a 3 + b 3 + 3 a b x x^{3} = (a + b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3} = a^{3} + b^{3} + 3ab(a + b) = a^{3} + b^{3} + 3abx .

Now a 3 + b 3 = ( 5 + 2 13 ) + ( 5 2 13 ) = 10 a^{3} + b^{3} = (5 + 2\sqrt{13}) + (5 - 2\sqrt{13}) = 10 , and

a b = ( 5 + 2 13 ) ( 5 2 13 ) 3 = 25 4 × 13 3 = 27 3 = 3 ab = \sqrt[3]{(5 + 2\sqrt{13})(5 - 2\sqrt{13})} = \sqrt[3]{25 - 4 \times 13} = \sqrt[3]{-27} = -3 . so

x 3 = 10 + 3 x × ( 3 ) = 10 9 x x 3 + 9 x 10 = ( x 1 ) ( x 2 + x + 10 ) = 0 x^{3} = 10 + 3x \times (-3) = 10 - 9x \Longrightarrow x^{3} + 9x - 10 = (x - 1)(x^{2} + x + 10) = 0 .

As the roots of x 2 + x + 10 x^{2} + x + 10 are complex, we can conclude that the real solution for x x is 1 \boxed{1} .

Chew-Seong Cheong
Apr 27, 2017

Let x = 5 + 2 13 3 + 5 2 13 3 x = \sqrt[3]{5+2\sqrt{13}} + \sqrt[3]{5-2\sqrt{13}} , then:

x 3 = ( 5 + 2 13 3 + 5 2 13 3 ) 3 = 5 + 2 13 + 3 ( 5 + 2 13 ) 2 ( 5 2 13 ) 3 + 3 ( 5 + 2 13 ) ( 5 2 13 ) 2 3 + 5 2 13 = 10 + 3 ( 5 + 2 13 ) ( 5 2 ( 2 13 ) 2 ) 3 + 3 ( 5 2 ( 2 13 ) 2 ) ( 5 2 13 ) 3 = 10 + 3 ( 5 + 2 13 ) ( 27 ) 3 + 3 ( 27 ) ( 5 2 13 ) 3 = 10 9 5 + 2 13 3 9 5 2 13 3 = 10 9 x \begin{aligned} x^3 & = \left( \sqrt[3]{5+2\sqrt{13}} + \sqrt[3]{5-2\sqrt{13}}\right)^3 \\ & = 5+2\sqrt{13} + 3 \sqrt[3]{(5+2\sqrt{13})^2(5-2\sqrt{13})} + 3 \sqrt[3]{(5+2\sqrt{13})(5-2\sqrt{13})^2} + 5-2\sqrt{13} \\ & = 10 + 3 \sqrt[3]{(5+2\sqrt{13})(5^2-(2\sqrt{13})^2)} + 3 \sqrt[3]{(5^2-(2\sqrt{13})^2)(5-2\sqrt{13})} \\ & = 10 + 3 \sqrt[3]{(5+2\sqrt{13})(-27)} + 3 \sqrt[3]{(-27)(5-2\sqrt{13})} \\ & = 10 - 9 \sqrt[3]{5+2\sqrt{13}} - 9 \sqrt[3]{5-2\sqrt{13}} \\ & = 10 - 9x \end{aligned}

Therefore, we have:

x 3 + 9 x 10 = 0 ( x 1 ) ( x 2 + x + 10 ) = 0 x = 1 \begin{aligned} x^3 + 9x - 10 & = 0 \\ (x-1)(x^2+x+10) & = 0 \\ \implies x & = \boxed{1} \end{aligned}

Since x 2 + x + 10 = 0 x^2+x+10 = 0 has no real root.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...