Maxed

Algebra Level 4

If x x and y y are real numbers and x 3 y = y 2 x 5 y = 6 x 15 y x \dfrac{x}{3y}=\dfrac{y}{2x-5y}=\dfrac{6x-15y}{x} and 4 x 2 + 36 y 8 -4 x^{2}+36y-8 has largest value, find the value of x + y x+y .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Veljko Radic
Apr 28, 2016

First we will prove next lemma:
If a , b , c a,b,c are real numbers and a b = b c = c a \frac{a}{b}=\frac{b}{c}=\frac{c}{a} then a = b = c a=b=c .
a b = b c \frac{a}{b}=\frac{b}{c}
a b × b 2 c = b c × b 2 c \frac{a}{b} \times b^{2}c=\frac{b}{c} \times b^{2}c
a b c = b 3 abc=b^{3}
On the same way we get a b c = a 3 abc=a^{3} and a b c = c 3 abc=c^{3} , so
a 3 = b 3 = c 3 a^{3}=b^{3}=c^{3}
Because of a,b,c are real numbers we have a = b = c a=b=c and the lemma is proven.
x 3 y = y 2 x 5 y = 6 x 15 y x \frac{x}{3y}=\frac{y}{2x-5y}=\frac{6x-15y}{x}
x 3 y = 3 y 3 ( 2 x 5 y = 6 x 15 y x \frac{x}{3y}=\frac{3y}{3(2x-5y}=\frac{6x-15y}{x}
x 3 y = 3 y 6 x 15 y = 6 x 15 y x \frac{x}{3y}=\frac{3y}{6x-15y}=\frac{6x-15y}{x} (1)
From (1) and lemma for a = x a=x , b = 3 y b=3y and c = 6 x 15 y c=6x-15y we have x = 3 y x=3y (2)
From (2) we have 4 x 2 + 36 y 8 = 4 ( 3 y ) 2 + 36 y 8 = 36 y 2 + 36 y 8 = ( ( 6 y ) 2 2 × 6 y × 3 + 3 2 ) + 1 = ( 6 y 3 ) 2 + 1 -4x^{2}+36y-8=-4(3y)^{2}+36y-8=-36y^{2}+36y-8=-((6y)^{2}-2 \times 6y \times 3 +3^{2})+1=-(6y-3)^{2}+1
This polynomial will have max value if y = 1 2 y=\frac{1}{2} , so x + y = 3 y + y = 4 y = 4 × 1 2 = 2 x+y=3y+y=4y=4 \times \frac{1}{2}=\boxed{2} ((2) implies x+y=4y)


But you just said that x x and y y ARE integers, why does your solution say y = 1 2 y = \dfrac12 ?

Pi Han Goh - 5 years, 1 month ago

Log in to reply

Sorry, I failed when I writing problem, I want to write x,y are real numbers, but I accidently write integers.

Veljko Radic - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...