An algebra problem by Victor Loh

Algebra Level 3

Given that a , b , c a,b,c are positive reals such that the maximum value of N N which satisfies the inequality

a b + c + b a + c + c a + b N \frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\geq N

can be expressed in the form m n \frac{m}{n} , where m m and n n are coprime, positive integers, find the value of m + n m+n .

Details and Assumptions \textbf{Details and Assumptions}

For those who know a certain inequality, this problem is going to be a no-brainer. :D


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Victor Loh
Jul 29, 2014

By Cauchy-Schwarz, we have

[ ( b + c ) + ( a + c ) + ( a + b ) ] ( 1 b + c + 1 a + c + 1 a + b ) 9 , \left[(b+c)+(a+c)+(a+b)\right]\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)\geq 9,

or

2 ( a + b + c b + c + a + b + c c + a + a + b + c a + b ) 9 , 2\left(\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\right)\geq 9,

which yields the desired result

a b + c + b a + c + c a + b 3 2 \frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\geq \frac{3}{2}

so m + n = 5 m+n=\boxed{5} and we are done.

Alternate solution:

Let S = a b + c + b a + c + c a + b \displaystyle S=\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b} M = b b + c + c a + c + a a + b \displaystyle M=\dfrac{b}{b+c}+\dfrac{c}{a+c}+\dfrac{a}{a+b} N = c b + c + a a + c + b a + b \displaystyle N=\dfrac{c}{b+c}+\dfrac{a}{a+c}+\dfrac{b}{a+b}

By AM-GM, S + M 3 S + N 3 \displaystyle S+M\geq3 \\ S+N\geq3

So 2 S + M + N 6 \displaystyle 2S+M+N\geq6

S 3 2 \displaystyle S\geq\dfrac{3}{2}

And 3 + 2 = 5 3+2=\boxed{5}

:D

Sean Ty - 6 years, 10 months ago

Log in to reply

how did u come to know that inequality must b greater than equal to 3?

Anchal Rajawat - 6 years, 10 months ago

Log in to reply

S + M = a + b b + c + b + c a + c + a + c a + b \displaystyle S+M=\dfrac{a+b}{b+c} + \dfrac{b+c}{a+c} + \dfrac{a+c}{a+b}

Applying AM-GM, S + M 3 S+M\geq3

Same goes for S + N S+N :D

Sean Ty - 6 years, 10 months ago

simple and elegant!!

Gaurav Jain - 6 years, 6 months ago

The problem is simply Nesbitt's Inequality. :D

Victor Loh - 6 years, 10 months ago

add 3 to both sides. (a+b+c) (1/(a+b) + 1/(b+c) + 1/(c+a)) multiply both sides by 2 and write 2a+2b+2c = (a+b) + (b+c) + (c+a) now apply am-hm inequality. nesbitt's :)

hemang sarkar - 6 years, 10 months ago

This solution works even if a , b , c a, b, c are negative reals. But, I don't think this in-equality holds for negative reals.

Aditya Sky - 4 years, 1 month ago
Fox To-ong
Jan 16, 2015

using AM - HM inequality

Vishal S
Jan 15, 2015

By A.M.-G.M. inequality

a + b 2 \frac {a+b}{2} \geq a b \sqrt{ab} \Rightarrow a+b \geq 2 a b \sqrt{ab} ----->(1)

b + c 2 \frac {b+c}{2} \geq b c \sqrt{bc} \Rightarrow b+c \geq 2 b c \sqrt{bc} ----->(2)

c + a 2 \frac {c+a}{2} \geq c a \sqrt{ca} \Rightarrow c+a \geq 2 c a \sqrt{ca} ----->(3)

a b + c \frac {a}{b+c} + b c + a \frac {b}{c+a} + c a + b \frac {c}{a+b} \geq N

\Rightarrow a 2 b c \frac {a}{2\sqrt{bc}} + b 2 c a \frac {b}{2\sqrt{ca}} + c 2 a b \frac {c}{2\sqrt{ab}} \geq N

\Rightarrow 2 a 2 b c + 2 b 2 c a + 2 c 2 a b 8 a b c \frac {2a^{2}\sqrt{bc}+2b^{2}\sqrt{ca}+2c^{2}\sqrt{ab}}{8abc} \geq N

\Rightarrow 2 a b c ( a b c + b c a + c a b ) 8 a b c \frac {2abc(\frac {a}{\sqrt{bc}}+\frac {b}{\sqrt{ca}}+\frac {c}{\sqrt{ab}})}{8abc} \geq N

Now

a b c \frac {a}{\sqrt{bc}} + b c a \frac {b}{ca} + c a b \frac {c}{ab} \geq N \Rightarrow a b c \frac {a}{\sqrt{bc}} + b c a \frac {b}{ca} + c a b \frac {c}{ab} \geq 4

\Rightarrow N=4

We can express 4 in the form of m n \frac {m}{n} as 4 1 \frac {4}{1} \Rightarrow m+n=4+1= 5 \boxed{5}

The answer is not 4 . It is 3 2 \dfrac {3}{2} .
See @Victor Loh 's solution. The equality holds at the minimum. (I.e. a = b = c a=b=c )

Sualeh Asif - 6 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...