Reminds of Newton?

Algebra Level 5

{ a + b + c = 1 a 2 + b 2 + c 2 = 2 2 a 3 + b 3 + c 3 = 3 2 \begin{cases} a+b+c=1 \\ a^2+b^2+c^2=2^2 \\ a^3 + b^3+c^3 = 3^2 \end{cases}

Given that a , b a,b and c c are complex numbers satisfying the system of equations above. If the value of 1 a 3 + 1 b 3 + 1 c 3 \dfrac1{a^3} + \dfrac1{b^3} + \dfrac1{c^3} is equal to p q \dfrac pq , where p p and q q are coprime positive integers, find p + q p+q .


The answer is 1630.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

a + b + c = 1 a+b+c=1 ..... ( 1 ) (1)
a 2 + b 2 + c 2 = 4 a^2+b^2+c^2=4 ...... ( 2 ) (2)
a 3 + b 3 + c 3 = 9 a^3+b^3+c^3=9 ...... ( 3 ) (3)

Squring both sides to ( 1 ) (1) .
a 2 + b 2 + c 2 + 2 ( a b + b c + c a ) = 1 \Rightarrow a^2+b^2+c^2+2(ab+bc+ca)=1

( a b + b c + c a ) = 3 2 \Rightarrow (ab+bc+ca)=\boxed{\dfrac{-3}{2}}

Adding ( 3 a b c ) (-3abc) both sides to ( 3 ) (3) .

a 3 + b 3 + c 3 3 a b c = 9 3 a b c \Rightarrow a^3+b^3+c^3-3abc=9-3abc

( a b c ) = 7 6 \Rightarrow (abc)=\boxed{\dfrac{7}{6}} ..... ( 4 ) (4)

1 a 3 + 1 b 3 + 1 c 3 = ( a b ) 3 + ( b c ) 3 + ( c a ) 3 ( a b c ) 3 \Rightarrow \dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{(ab)^3+(bc)^3+(ca)^3}{(abc)^3}

Now, finding ( a b ) 3 + ( b c ) 3 + ( c a ) 3 (ab)^3+(bc)^3+(ca)^3 .

Let a b = x ab=x , b c = y bc=y and c a = z ca=z .

x 3 + y 3 + z 3 = f \Rightarrow x^3+y^3+z^3=f

Adding ( 3 x y z ) (-3xyz) both sides.

( x + y + z ) ( x 2 + y 2 + z 2 ( x y + y z + z x ) = f 3 x y z \Rightarrow (x+y+z)(x^2+y^2+z^2-(xy+yz+zx)=f-3xyz

( a b + b c + c a ) [ ( a b + b c + c a ) 2 3 a b c ( a + b + c ) ] = f 3 ( a b c ) 2 \Rightarrow (ab+bc+ca)[(ab+bc+ca)^2-3abc(a+b+c)]=f-3(abc)^2

( 3 2 ) [ 49 36 21 6 ] = f 49 12 \Rightarrow (\dfrac{-3}{2})[\dfrac{49}{36}-\dfrac{21}{6}]=f-\dfrac{49}{12}

( a b ) 3 + ( b c ) 3 + ( c a ) 3 = 143 24 \Rightarrow (ab)^3+(bc)^3+(ca)^3=\boxed{\dfrac{143}{24}} .... ( 5 ) (5)

( a b ) 3 + ( b c ) 3 + ( c a ) 3 ( a b c ) 3 \Rightarrow \dfrac{(ab)^3+(bc)^3+(ca)^3}{(abc)^3}

Now putting values from ( 4 ) (4) and ( 5 ) (5) .

143 24 × ( 7 ) 3 ( 6 ) 3 \Rightarrow \dfrac{143}{24}×\dfrac{(7)^3}{(6)^3}

30888 8232 = 1287 343 \Rightarrow \dfrac{30888}{8232}=\dfrac{1287}{343}

1287 343 = p q \Rightarrow \dfrac{1287}{343}=\dfrac{p}{q}

p + q = 1287 + 343 = 1630 \Rightarrow p+q=1287+343=\boxed{1630} .

Learned a new way to think . Thanks !😀😀

Anurag Pandey - 4 years, 10 months ago

Let a , b , c a,b,c be the roots of the cubic equation with symmetric sums S 1 , S 2 , S 3 S_{1}, S_{2}, S_{3} .
Let P n = a n + b n + c n P_{n} = a^{n} + b^{n} + c^{n}
According to Newton's Identities,
P 1 = S 1 P_{1} = S_{1}
P 2 = S 1 P 1 2 S 2 P_{2} = S_{1}P_{1} - 2S_{2}
P 3 = S 1 P 2 S 2 P 1 + 3 S 3 P_{3} = S_{1}P_{2} - S_{2}P_{1} + 3S_{3}
Solving these equations for S 1 , S 2 , S 3 S_{1} , S_{2}, S_{3} yields
S 1 = 1 , S 2 = 3 2 , S 3 = 7 6 S_{1} = 1, S_{2} = \dfrac{-3}{2}, S_{3} = \dfrac{7}{6}
Therefore, the cubic equation with roots a , b , c a,b,c as roots is given by
x 3 S 1 x 2 + S 2 x S 3 = 0 x^{3} - S_{1}x^{2} + S_{2}x - S_{3} = 0
Substituting the values of S 1 , S 2 , S 3 S_{1}, S_{2} , S_{3}

6 x 3 6 x 3 9 x 7 = 0 \therefore 6x^{3} - 6x^{3} - 9x - 7 = 0
Thus, the equation whose roots are reciprocal of the given equation are given by substituting x = 1 y x = \dfrac{1}{y}
New equation : 7 x 3 + 9 x 2 + 6 x 6 = 0 7x^{3} + 9x^{2} + 6x - 6 = 0
Let the symmetric sums of this new equation be denoted by e 1 , e 2 , e 3 e_{1}, e_{2}, e_{3}
By Vieta's formula,
e 1 = 9 7 e_{1} = \dfrac{-9}{7}
e 2 = 6 7 e_{2} = \dfrac{6}{7}
e 3 = 6 7 e_{3} = \dfrac{-6}{7}
Applying Newton's Identities again,
P 1 = e 1 = 9 7 P_{1'} = e_{1} = \dfrac{-9}{7}
P 2 = e 1 P 1 2 e 2 = 81 49 2 × 6 7 = 3 49 P_{2'} = e_{1}P_{1'} - 2e_{2} = \dfrac{81}{49} -2 \times \dfrac{6}{7} = \dfrac{-3}{49}
P 3 = e 1 P 2 e 2 P 1 + 3 e 3 = 27 343 + 54 49 + 18 7 = 27 + 378 + 882 343 = 1287 343 P_{3'} = e_{1}P_{2'} - e_{2}P_{1'} + 3e_{3} = \dfrac{27}{343} + \dfrac{54}{49} + \dfrac{18}{7}= \dfrac {27 + 378 + 882}{343}= \dfrac{1287}{343}
M = 1 a 3 + 1 b 3 + 1 c 3 = P 3 = 1287 343 M = \dfrac{1}{a^3} + \dfrac{1}{b^3} + \dfrac{1}{c^3} = P_{3'} = \dfrac{1287}{343}
Comparing we get, p = 1287 , q = 343 p = 1287 , q = 343
p + q = 1287 + 343 = 1630 p + q = 1287 + 343 = 1630

I also did this way!!😀😀

Anurag Pandey - 4 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...