Try Gonometry

Algebra Level pending

Given: s i n ( x ) + c o s ( x ) = 1 2 sin(x)\, +\, cos(x)\, =\, \frac { 1 }{ 2 } And s i n 3 ( x ) + c o s 3 ( x ) = a b { sin }^{ 3 }(x)\, +\, { cos }^{ 3 }(x)\, =\, \frac { a }{ b }

Find: b a b\, -\, a such that a a and b b are co-prime integers.


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sum of Two Cubes: sin 3 x + cos 3 x = ( sin x + cos x ) ( sin 2 x sin x cos x + cos 2 x ) \sin^3 x + \cos^3 x = (\sin x+\cos x)(\sin^2x-\sin x\cos x+\cos^2x) First, note that from the first equation you get: ( sin x + cos x ) 2 = 1 2 2 (\sin x + \cos x)^2 = \dfrac{1}{2}^2 1 + 2 sin x cos x = 1 4 1+2\sin x\cos x = \dfrac{1}{4} sin x cos x = 3 8 \sin x\cos x = -\dfrac{3}{8} Now we have everything we need, we just need to substitute these values to the first equation: ( sin x + cos x ) ( sin 2 x sin x cos x + cos 2 x ) (\sin x+\cos x)(\sin^2x-\sin x\cos x+\cos^2x) ( 1 2 ) ( 1 + 3 8 ) \left(\dfrac{1}{2}\right)\left(1+\dfrac{3}{8}\right) = 11 16 = \boxed{\dfrac{11}{16}} And so, b a = 16 11 = 5 b-a=16-11=\boxed{5}

Given:

sin ( x ) + cos ( x ) = 1 2 \sin { (x)\quad +\quad } \cos { (x) } \quad =\quad \frac { 1 }{ 2 }

Square both sides

[ sin ( x ) + cos ( x ) ] 2 = ( 1 2 ) 2 { \left[ \sin { (x) } \quad +\quad \cos { (x) } \right] }^{ 2 }\quad =\quad { \left( \frac { 1 }{ 2 } \right) }^{ 2 }

Factor out

sin 2 ( x ) + 2 sin ( x ) cos ( x ) + cos 2 ( x ) = 1 4 \sin ^{ 2 }{ (x)\quad +\quad 2\sin { (x) } \cos { (x)\quad +\quad \cos ^{ 2 }{ (x)\quad =\quad \frac { 1 }{ 4 } } } }

But

sin 2 ( x ) + cos 2 ( x ) = 1 \sin ^{ 2 }{ (x)\quad +\quad } \cos ^{ 2 }{ (x) } \quad =\quad 1

So

2 sin ( x ) cos ( x ) + 1 = 1 4 2\sin { (x) } \cos { (x)\quad +\quad 1\quad =\quad \frac { 1 }{ 4 } }

Simplify (Eq. 1)

sin ( x ) cos ( x ) = 3 8 E q . ( 1 ) \sin { (x) } \cos { (x) } \quad =\quad -\frac { 3 }{ 8 } \quad Eq.\quad (1)

Cube given equation

[ sin ( x ) + cos ( x ) ] 3 = ( 1 2 ) 3 { \left[ \sin { (x)\quad +\quad \cos { (x) } } \right] }^{ 3 }\quad =\quad { \left( \frac { 1 }{ 2 } \right) }^{ 3 }

Factor out

sin 3 ( x ) + 3 sin 2 ( x ) cos ( x ) + 3 sin ( x ) cos 2 ( x ) + cos 3 ( x ) = 1 8 \sin ^{ 3 }{ (x) } \quad +\quad 3\sin ^{ 2 }{ (x) } \cos { (x) } \quad +\quad 3\sin { (x) } \cos ^{ 2 }{ (x) } \quad +\quad \cos ^{ 3 }{ (x) } \quad =\quad \frac { 1 }{ 8 }

Separate

sin 3 ( x ) + cos 3 ( x ) = 1 8 3 sin 2 ( x ) cos ( x ) 3 sin ( x ) cos 2 ( x ) \sin ^{ 3 }{ (x) } \quad +\quad \cos ^{ 3 }{ (x) } \quad =\quad \frac { 1 }{ 8 } \quad -\quad 3\sin ^{ 2 }{ (x) } \cos { (x) } \quad -\quad 3\sin { (x) } \cos ^{ 2 }{ (x) }

Factor out right side

sin 3 ( x ) + cos 3 ( x ) = 1 8 3 sin ( x ) cos ( x ) [ sin ( x ) + cos ( x ) ] \sin ^{ 3 }{ (x) } \quad +\quad \cos ^{ 3 }{ (x) } \quad =\quad \frac { 1 }{ 8 } \quad -\quad 3\sin { (x) } \cos { (x) } \left[ \sin { (x) } \quad +\quad \cos { (x) } \right]

Plugin given equation and Eq. 1

sin 3 ( x ) + cos 3 ( x ) = 1 8 3 ( 3 8 ) ( 1 2 ) = 11 16 = a b \sin ^{ 3 }{ (x) } \quad +\quad \cos ^{ 3 }{ (x) } \quad =\quad \frac { 1 }{ 8 } \quad -\quad 3\left( -\frac { 3 }{ 8 } \right) \left( \frac { 1 }{ 2 } \right) \quad =\quad \frac { 11 }{ 16 } \quad =\quad \frac { a }{ b }

a = 11 a n d b = 16 \therefore \quad a\quad =\quad 11\quad and\quad b\quad =\quad 16

b a = 16 11 = 5 b\quad -\quad a\quad =\quad 16\quad -\quad 11\quad =\quad \boxed { 5 }

Nice factoring at the end of the equation.

Marc Vince Casimiro - 6 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...