An algebra problem by Vilakshan Gupta

Algebra Level 3

Consider the infinite sequence: 1 1 , 2 2 , 3 3 , . . . . . , n n \sqrt[1]{1}, \sqrt[2]{2} , \sqrt[3]{3} , ..... ,\sqrt[n]{n}

If the largest value is of the form a a \sqrt[a]{a} , enter a a .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jul 20, 2017

We note that 2 2 = 4 4 \sqrt [2]2 = \sqrt[4]4 and that from 1 1 \sqrt[1]1 to 2 2 \sqrt[2]2 is increasing while from 4 4 \sqrt[4]4 to n n \sqrt[n]n for n > 4 n>4 as lim n n 1 n = 1 \displaystyle \lim_{n \to \infty} n^\frac 1n = 1 (see note) is decreasing, the maximum must be between 2 2 \sqrt[2]2 to 4 4 \sqrt[4]4 , which is only 3 3 \sqrt[3]3 . Therefore, a = 3 a=\boxed{3} .

Note:

lim n n 1 n = lim n exp ( log n 1 n ) = exp ( lim n log n n ) = e 0 = 1 By L’H o ˆ pital’s rule \small \begin{aligned} \lim_{n \to \infty} n^\frac 1n & = \lim_{n \to \infty} \exp \left( \log n^\frac 1n \right) = \exp \left({\color{#3D99F6}\lim_{n \to \infty} \frac {\log n}n}\right) = e^{\color{#3D99F6}0} = 1 & \color{#3D99F6} \text{By L'Hôpital's rule}\end{aligned}


Alternatively , it can also be shown using calculus as @Christian Daang 's solution. Consider the continuous function of y = x 1 x y = x^\frac 1x , then d y d x = \dfrac {dy}{dx} = d d x x 1 x = \dfrac d{dx} x^\frac 1x = d d x e 1 x ln x = \dfrac d{dx} e^{\frac 1x \ln x} = 1 ln x x 2 x 1 x \dfrac {1-\ln x}{x^2} x^\frac 1x . Equating d y d x = 0 \dfrac {dy}{dx} = 0 , ln x = 1 \implies \ln x = 1 , x = e \implies x = e . It can be shown that d 2 y d x 2 < 0 \dfrac {d^2y}{dx^2} < 0 (see note), therefore, max ( y ) = e 1 e \max(y) = e^\frac 1e . Since e 2.718 e \approx 2.718 , the nearest integer is 3 \boxed{3} .

Note:

d 2 y d x 2 = ( 1 ln x x 2 ) 2 x 1 x ( 1 x 3 + 2 ( 1 ln x ) x 3 ) x 1 x d 2 y d x 2 x = e = 0 ( 1 e 3 + 0 ) e 1 e < 0 \small \begin{aligned} \frac {d^2y}{dx^2} & = \left(\frac {1-\ln x}{x^2}\right)^2 x^\frac 1x - \left( \frac 1{x^3} + \frac {2(1-\ln x)}{x^3}\right) x^\frac 1x \\ \frac {d^2y}{dx^2}\bigg|_{x=e} & = 0 - \left( \frac 1{e^3} + 0\right) e^\frac 1e < 0 \end{aligned}

Christian Daang
Jul 20, 2017

let f ( x ) = y = x 1 / x f(x) = y = x^{1/x}

f ( x ) = y = x 1 / x 2 ( ln x 1 ) = 0 \implies f'(x) = y' = -x^{1/x \ - \ 2} ( \ln x - 1) = 0 to find the value of x that will maximize f ( x ) f (x) \cdot

Upon solving, we will get x = e 2.718281828459045 x = e \approx 2.718281828459045

But, as x 3 , x \rightarrow 3 \ , hence, the answer then.


The f ( x ) f' (x) was solved by the aid of differentiation using logarithms.

y = x 1 / x ln ( y ) = 1 x ( ln x ) y y = 1 x ( 1 x ) ( ln x ) ( 1 x 2 ) f ( x ) = y = x 1 / x ( 1 x 2 ( 1 ln x ) ) f ( x ) = x 1 / x 2 ( ln x 1 ) \begin{aligned} y = x^{1/x} \implies \ln (y) = \dfrac{1}{x} ( \ln x) \\ & \implies \dfrac{y'}{y} = \dfrac{1}{x} \left( \dfrac{1}{x} \right) - ( \ln x) \left( \dfrac{1}{x^2} \right) \\ & f'(x) = y' = x^{1/x} \left( \dfrac{1}{x^2} \cdot (1 - \ln x) \right) \\ & f'(x) = -x^{1/x \ - \ 2} \cdot ( \ln x - 1) \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...