An algebra problem by Vishnu Kadiri

Algebra Level 3

In solving a quadratic equation x 2 a x + b = 0 { x }^{ 2 }-ax+b=0 ,
a boy copies a a wrongly and obtained the roots as 4 and 10,
another boy copies b b wrongly and obtained roots as 6 and 7.
Find a + b a+b .


The answer is 53.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Viki Zeta
Sep 17, 2016

Boy A copies just copies ’a’ wrongly, so his ’b’ would be correct. Let that function be p(x) Let α = 4 and β = 10 be the zeros of p(x). Then using Vietas formula, α × β = b 1 b = 4 × 10 = 40 Another boy copies ’b’ wrongly, so his ’a’ would be correct. Let that function be g(x) Let α = 6 and β = 7 be the zeros of g(x). Then using Vietas formula α + β = a 1 6 + 7 = a a = 13 a + b = 40 + 13 = 53 \text{Boy A copies just copies 'a' wrongly, so his 'b' would be correct. Let that function be p(x)}\\ \text{Let }\alpha =4\text{ and } \beta =10\text{ be the zeros of p(x). Then using Vietas formula, } \\ \alpha \times \beta = \dfrac{b}{1} \\ b = 4 \times 10 = 40 \\ \text{Another boy copies 'b' wrongly, so his 'a' would be correct. Let that function be g(x)} \\ \text{Let }\alpha = 6\text{ and }\beta = 7 \text{ be the zeros of g(x). Then using Vietas formula} \\ \alpha + \beta = \dfrac{a}{1} \\ 6 +7 = a \\ a = 13 \\ \therefore a + b = 40 + 13 = \fbox{ 53 }

Vishnu Kadiri
Sep 17, 2016

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...