You know x+y!

Algebra Level 3

{ x + y = 16 5 1 x + 1 y = 16 3 \begin{cases} x+y=\dfrac { 16 }{ 5 } \\ \dfrac { 1 }{ x } +\dfrac { 1 }{ y } =\dfrac { 16 }{ 3 } \end{cases}

Solve the system of equations above and find the integral solution of 4 x + 10 y 5 x y 4x+10y-5xy .


The answer is 11.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Sep 17, 2016

{ x + y = 16 5 . . . ( 1 ) 1 x + 1 y = 16 3 . . . ( 2 ) \begin{cases} x+y = \dfrac {16}5 & ...(1) \\ \dfrac 1x + \dfrac 1y = \dfrac {16}3 & ...(2) \end{cases}

( 2 ) : 1 x + 1 y = 16 3 x + y x y = 16 3 ( 1 ) : x + y = 16 5 16 5 x y = 16 3 x y = 3 5 . . . ( 3 ) \begin{aligned} (2): \quad \frac 1x + \frac 1y & = \frac {16}3 \\ \frac {\color{#3D99F6}{x+y}}{xy} & = \frac {16}3 & \small \color{#3D99F6}{(1): \ x+y = \frac {16}5} \\ \frac {\color{#3D99F6}{16}}{\color{#3D99F6}{5}xy} & = \frac {16}3 \\ \implies xy & = \frac 35 \quad ...(3) \end{aligned}

( 1 ) × x : x 2 + x y = 16 5 x ( 3 ) : x y = 3 5 x 2 + 3 5 = 16 5 x 5 x 2 16 x + 3 = 0 ( 5 x 1 ) ( x 3 ) = 0 x , y = 1 5 , 3 \begin{aligned} (1)\times x: \quad x^2+\color{#3D99F6}{xy} & = \frac {16}5x & \small \color{#3D99F6}{(3): \ xy = \frac 35} \\ x^2+\color{#3D99F6}{\frac 35} & = \frac {16}5x \\ 5x^2 -16x+3 & = 0 \\ (5x-1)(x-3) & = 0 \\ \implies x,y & = \frac 15, 3 \end{aligned}

4 x + 10 y 5 x y = { 4 × 1 5 + 10 × 3 5 × 3 5 = 27.8 Not integer, rejected. 4 × 3 + 10 × 1 5 5 × 3 5 = 11 Integer, accepted. \implies 4x + 10y - 5xy = \begin{cases} 4 \times \dfrac 15 + 10 \times 3 - 5 \times \dfrac 35 = \color{#D61F06}{27.8} & \color{#D61F06} {\text{Not integer, rejected.}} \\ 4 \times 3 + 10 \times \frac 15 - 5 \times \dfrac 35 = \boxed{\color{#3D99F6}{11}} & \color{#3D99F6} {\text{Integer, accepted.}} \end{cases}

@Vishnu Kadiri , I have edited your problem. The are two answer to (4x+10y-5xy). That is why, I add in "integral solution". Also the problem should not be Level 5. I have changed it to Level 3.

Chew-Seong Cheong - 4 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...