An algebra problem by Vishnu Kadiri

Algebra Level 3

Let a a , b b , c c , and d d be positive reals such that a + b + c + d = 1 a+b+c+d=1 . Find the maximum value of a b a + b + a c a + c + a d a + d + b c b + c + b d b + d + c d c + d \large \frac { ab }{ a+b } +\frac { ac }{ a+c } +\frac { ad }{ a+d } +\frac { bc }{ b+c } +\frac { bd }{ b+d } +\frac { cd }{ c+d }


The answer is 0.75.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Vishnu Kadiri
Sep 24, 2017

Chew-Seong Cheong
Sep 25, 2017

Relevant wiki: Power Mean Inequality (QAGH)

X = c y c a b a + b Divide up and down by a b = c y c 1 1 a + 1 b By AM-HM inequality: a + b 2 2 1 a + 1 b c y c a + b 4 \begin{aligned} X & = \sum_{cyc} \frac {ab}{a+b} & \small \color{#3D99F6} \text{Divide up and down by }ab \\ & = \sum_{cyc} \frac {1}{\frac 1a+\frac 1b} & \small \color{#3D99F6} \text{By AM-HM inequality: }\frac {a+b}2 \ge \frac 2{\frac 1a + \frac 1b} \\ & \le \sum_{cyc} \frac {a+b}4 \end{aligned}

X 3 ( a + b + c + d ) 4 = 3 4 = 0.75 \implies X \le \dfrac {3(a+b+c+d)}4 = \dfrac 34 = \boxed{0.75}

In the last and penultimate step, there should be an equal sign instead of smaller than or equal sign because a+b+c+d=1 not a+b+c+d>=1.

Vishnu Kadiri - 3 years, 8 months ago

Log in to reply

I actually mean X 3 ( a + b + c + d 4 X \le \dfrac {3(a+b+c+d}4 and X 3 4 X \le \dfrac 34 so that it doesn't read X = 3 4 X = \dfrac 34 .

Chew-Seong Cheong - 3 years, 8 months ago

Log in to reply

Correct but it may also be read like this: 3(a+b+c+d)/4>=3/4

Vishnu Kadiri - 3 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...