a + b + 1 = 0 a+b+1=0

Algebra Level 1

If a + b + 1 = 0 a+b+1=0 , then the value of a 3 + b 3 + 1 3 a b a^3+b^3+1-3ab is


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

25 solutions

U Z
Nov 7, 2014

a 3 + b 3 + c 3 3 a b c = ( a + b + c ) ( a 2 + b 2 + c 2 a b b c a c ) a^{3} + b^{3} + c^{3} - 3abc = ( a + b + c)(a^{2} + b^{2} + c^{2} - ab - bc - ac)

a 3 + b 3 + 1 3 3 a b . 1 = ( a + b + 1 ) ( a 2 + b 2 + 1 a b a b ) a^{3} + b^{3} + 1^{3} - 3ab.1 = (a + b + 1 )(a^{2} + b^{2} + 1 - a - b -ab)

a 3 + b 3 + 1 3 3 a b . 1 = ( 0 ) ( a 2 + b 2 + 1 a b a b ) a^{3} + b^{3} + 1^{3} - 3ab.1 = (0)(a^{2} + b^{2} + 1 - a - b -ab)

= 0 = 0

@Vivek Vijayan Nice problem

Chew-Seong Cheong
Nov 10, 2014

From a + b + 1 = 0 a + b = 1 a+b+1=0\quad \Rightarrow a+b = -1

Cubing both side we have:

( a + b ) 3 = ( 1 ) 3 a 3 + 3 a 2 b + 3 a b 2 + b 3 = 1 (a+b)^3 = (-1)^3\quad \Rightarrow a^3 + 3a^2b + 3ab^2 + b^3 = -1

a 3 + b 3 + 1 + 3 a b ( a + b ) = 0 a 3 + b 3 + 1 + 3 a b ( 1 ) = 0 \Rightarrow a^3 + b^3 + 1 + 3ab(a+b) = 0\quad \Rightarrow a^3 + b^3 + 1 + 3ab(-1) = 0

a 3 + b 3 + 1 3 a b = 0 \Rightarrow a^3 + b^3 + 1 - 3ab = \boxed{0}

Platonas Platonas
Jul 13, 2014

a+b=-1, so (a + b)^3 = -1, but (a+b)^3= a^3 + 3ba^2 + 3ab^2+b^3 = a^3 + b^3 + 3ab(a+b)= a^3 + b^3 -3ab= -1. Adding 1 we get 0.

Aldo Culquicondor
Jul 18, 2014

a + b = 1 a 2 + b 2 + 2 a b = 1 a 2 + b 2 a b = 1 3 a b a+b=-1\\ a^2+b^2+2ab=1\\ a^2+b^2-ab=1-3ab Then a 3 + b 3 + 1 3 a b ( a + b ) ( a 2 + b 2 a b ) + 1 3 a b ( 1 ) ( 1 3 a b ) + 1 3 a b = 0 a^3+b^3+1-3ab\\ (a+b)(a^2+b^2-ab)+1-3ab\\ (-1)(1-3ab)+1-3ab = 0

Aditya Deshpande
Jul 16, 2014

when a+b=(-1) then, (a+b)^2=1, then (a+b)^3=(-1 )

Acc. to formula(a+b)^2 (a*b)=1 then

Acc. To (a+b)^3=a^3+b^3+3ab(a+b)

-1=a^3+b^3+3(-1)

-1=a^3+b^3-3

a^3+b^3=2. then,

From question

a^3+b^3+1-3ab=2+1-3(1)

=3-3

=0.

Ashish Menon
Mar 18, 2016

Hmmm... I wonder if a = 1 a=-1 and b = 0 b=0 , so that the first equation is satisfied.
Now, I can substitute them in the second equation.
a 3 + b 3 + 1 3 a b a^3+b^3+1-3ab
= ( 1 ) 3 + ( 0 ) 3 + 1 3 ( 1 ) ( 0 ) (-1)^3 + (0)^3 + 1 -3 (-1)(0)
= 1 + 0 + 1 0 -1+0+1-0
= 0 0 . _\square




Moderator note:

This solution deals with a particular case. It doesn't explain the general case, hence it is incomplete.

Shubham Ghosh
Apr 15, 2015

If a+b+c=0,then a3 +b3+c3=3abc. So,3abc-3abc=0

Tanveen Dhingra
Nov 22, 2014

just take a = -1 and b= 0 .

William Chau
Nov 11, 2014

a^3+b^3+1-3ab = a^3+b^3+3ab(a+b)+1 = (a+b)^3+1 = 0.

Talha Butt
Nov 11, 2014

a+b+1=0 a+b=-1 (a+b)^3=(-1)^3 a^3+b^3+3ab(a+b)=-1 a^3+b^3+3ab(-1)=-1 [a+b=-1] a^3+b^3-3ab=-1 a^3+b^3-3ab+1=0 a^3+b^3+1-3ab=0 ans is 0

Anna Anant
Nov 11, 2014

a+b+1=0 a+b=-1 (a+b)^3=(-1)^3 a^3+b^3+3ab(a+b)=-1 a^3+b^3+3ab(-1)=-1 [a+b=-1] a^3+b^3-3ab=-1 a^3+b^3-3ab+1=0 a^3+b^3+1-3ab=0 Ans is 0

-1+3ab+1-3ab=0

Hemanth Koundinya
Nov 11, 2014

a+b=-1
(a+b)^3=(-1)^3
a^3+b^3+3ab(a+b)=-1
a^3+b^3+3ab(-1)=-1 [a+b=-1]
a^3+b^3-3ab=-1
a^3+b^3-3ab+1=0
a^3+b^3+1-3ab=0
Ans is 0






Mehul Arora
Nov 11, 2014

Given that,

a+b+1=0 a+b=-1

(a+b)^3=(-1)^3

a^3+b^3+3ab(a+b)=-1

a^3+b^3+3ab(-1)=-1 [a+b=-1]

a^3+b^3-3ab=-1

a^3+b^3-3ab+1=0

a^3+b^3+1-3ab=0

Ans is 0

Nidhin P Sath
Nov 11, 2014

a+b+1=0 a+b=-1 (a+b)^3=(-1)^3 a^3+b^3+3ab(a+b)=-1 a^3+b^3+3ab(-1)=-1 a^3+b^3-3ab=-1 a^3+b^3-3ab+1=0 a^3+b^3+1-3ab=0

Aditya Pappula
Nov 10, 2014

a+b+c = 0 => a^3+b^3+c^3-3abc = 0 Substituting c = 1, we get the answer!

Pratik Shelar
Nov 10, 2014

a+b+1=0 so here assume a= -2 and b=1 so above equ is satisfied now a^3= -8 and b^3=1 so -8+1+1-(3(-2)(1)) SO -6 -(-6)=0 :P

You could have just taken -1 and 0 :P

Aditya Pappula - 6 years, 7 months ago
Ashutosh Tiwari
Nov 10, 2014

If a+b+1=0 then a+b=-1 On cubing both sides , we get, a^3 + 3ab(a+b) +b^3=-1 but a+b=-1 thus, a^3 + 3ab(-1) + b^3=-1 a^3 + b^3 +1 -3ab =0 simple and easy

replace b with -a-1 and simplify the equation, it all cancels out and gives 0 in the end

Tee Jayy
Nov 10, 2014

How about just plain old "a"=2 and "b"=-3 a^3 + b^3 + 1 - 3ab (2)^3 + (-3)^3 + 1 - 3ab 8 - 27 + 1 +18 -19 + 19 0

Abhishek Dwivedi
Nov 10, 2014

(a+b)^3=a^3+b^3+3ab(a+b) (1) now a+b=-1 and (a+b)^3=-1 hence eq(1)=a^3+b^3-3ab so eq becomes (a+b)^3+1=0

There is an identity

If a+b+c=0,

(a)^3+(b)^3+(c)^3=3abc

So,

(a)^3+(b)^3+(c)^3-3abc=0

Here,

a^3+b^3+1^3=3abc

a^3+b^3+1-3abc=0

Shorup Chanda
Jul 20, 2014

a+b=-1, so (a + b)^3 = -1, but (a+b)^3= a^3 + 3ba^2 + 3ab^2+b^3 = a^3 + b^3 + 3ab(a+b)= a^3 + b^3 -3ab= -1. Adding 1 we get 0.

a^3 + b^3 = (a+b)^3 - 3ab(a+b) Since a+b=-1, (a+b)^3 - 3ab(a+b) = -1+3ab Since we are looking for the value of (a^3 + b^3 +1-3ab), we will substitute a^3 + b^3= -1+3ab => -1+3ab+1-3ab= 0

Tanmey Rawal
Jul 19, 2014

it is a simple indentity if sum of three numbers is zero then sum of thier cubes is three times the product of the numbers

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...