If a + b + 1 = 0 , then the value of a 3 + b 3 + 1 − 3 a b is
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
From a + b + 1 = 0 ⇒ a + b = − 1
Cubing both side we have:
( a + b ) 3 = ( − 1 ) 3 ⇒ a 3 + 3 a 2 b + 3 a b 2 + b 3 = − 1
⇒ a 3 + b 3 + 1 + 3 a b ( a + b ) = 0 ⇒ a 3 + b 3 + 1 + 3 a b ( − 1 ) = 0
⇒ a 3 + b 3 + 1 − 3 a b = 0
a+b=-1, so (a + b)^3 = -1, but (a+b)^3= a^3 + 3ba^2 + 3ab^2+b^3 = a^3 + b^3 + 3ab(a+b)= a^3 + b^3 -3ab= -1. Adding 1 we get 0.
a + b = − 1 a 2 + b 2 + 2 a b = 1 a 2 + b 2 − a b = 1 − 3 a b Then a 3 + b 3 + 1 − 3 a b ( a + b ) ( a 2 + b 2 − a b ) + 1 − 3 a b ( − 1 ) ( 1 − 3 a b ) + 1 − 3 a b = 0
when a+b=(-1) then, (a+b)^2=1, then (a+b)^3=(-1 )
Acc. to formula(a+b)^2 (a*b)=1 then
Acc. To (a+b)^3=a^3+b^3+3ab(a+b)
-1=a^3+b^3+3(-1)
-1=a^3+b^3-3
a^3+b^3=2. then,
From question
a^3+b^3+1-3ab=2+1-3(1)
=3-3
=0.
Hmmm... I wonder if
a
=
−
1
and
b
=
0
, so that the first equation is satisfied.
Now, I can substitute them in the second equation.
a
3
+
b
3
+
1
−
3
a
b
=
(
−
1
)
3
+
(
0
)
3
+
1
−
3
(
−
1
)
(
0
)
=
−
1
+
0
+
1
−
0
=
0
.
□
This solution deals with a particular case. It doesn't explain the general case, hence it is incomplete.
If a+b+c=0,then a3 +b3+c3=3abc. So,3abc-3abc=0
just take a = -1 and b= 0 .
a^3+b^3+1-3ab = a^3+b^3+3ab(a+b)+1 = (a+b)^3+1 = 0.
a+b+1=0 a+b=-1 (a+b)^3=(-1)^3 a^3+b^3+3ab(a+b)=-1 a^3+b^3+3ab(-1)=-1 [a+b=-1] a^3+b^3-3ab=-1 a^3+b^3-3ab+1=0 a^3+b^3+1-3ab=0 ans is 0
a+b+1=0 a+b=-1 (a+b)^3=(-1)^3 a^3+b^3+3ab(a+b)=-1 a^3+b^3+3ab(-1)=-1 [a+b=-1] a^3+b^3-3ab=-1 a^3+b^3-3ab+1=0 a^3+b^3+1-3ab=0 Ans is 0
a+b=-1
(a+b)^3=(-1)^3
a^3+b^3+3ab(a+b)=-1
a^3+b^3+3ab(-1)=-1 [a+b=-1]
a^3+b^3-3ab=-1
a^3+b^3-3ab+1=0
a^3+b^3+1-3ab=0
Ans is 0
Given that,
a+b+1=0 a+b=-1
(a+b)^3=(-1)^3
a^3+b^3+3ab(a+b)=-1
a^3+b^3+3ab(-1)=-1 [a+b=-1]
a^3+b^3-3ab=-1
a^3+b^3-3ab+1=0
a^3+b^3+1-3ab=0
Ans is 0
a+b+1=0 a+b=-1 (a+b)^3=(-1)^3 a^3+b^3+3ab(a+b)=-1 a^3+b^3+3ab(-1)=-1 a^3+b^3-3ab=-1 a^3+b^3-3ab+1=0 a^3+b^3+1-3ab=0
a+b+c = 0 => a^3+b^3+c^3-3abc = 0 Substituting c = 1, we get the answer!
a+b+1=0 so here assume a= -2 and b=1 so above equ is satisfied now a^3= -8 and b^3=1 so -8+1+1-(3(-2)(1)) SO -6 -(-6)=0 :P
You could have just taken -1 and 0 :P
If a+b+1=0 then a+b=-1 On cubing both sides , we get, a^3 + 3ab(a+b) +b^3=-1 but a+b=-1 thus, a^3 + 3ab(-1) + b^3=-1 a^3 + b^3 +1 -3ab =0 simple and easy
replace b with -a-1 and simplify the equation, it all cancels out and gives 0 in the end
How about just plain old "a"=2 and "b"=-3 a^3 + b^3 + 1 - 3ab (2)^3 + (-3)^3 + 1 - 3ab 8 - 27 + 1 +18 -19 + 19 0
(a+b)^3=a^3+b^3+3ab(a+b) (1) now a+b=-1 and (a+b)^3=-1 hence eq(1)=a^3+b^3-3ab so eq becomes (a+b)^3+1=0
There is an identity
If a+b+c=0,
(a)^3+(b)^3+(c)^3=3abc
So,
(a)^3+(b)^3+(c)^3-3abc=0
Here,
a^3+b^3+1^3=3abc
a^3+b^3+1-3abc=0
a+b=-1, so (a + b)^3 = -1, but (a+b)^3= a^3 + 3ba^2 + 3ab^2+b^3 = a^3 + b^3 + 3ab(a+b)= a^3 + b^3 -3ab= -1. Adding 1 we get 0.
a^3 + b^3 = (a+b)^3 - 3ab(a+b) Since a+b=-1, (a+b)^3 - 3ab(a+b) = -1+3ab Since we are looking for the value of (a^3 + b^3 +1-3ab), we will substitute a^3 + b^3= -1+3ab => -1+3ab+1-3ab= 0
it is a simple indentity if sum of three numbers is zero then sum of thier cubes is three times the product of the numbers
Problem Loading...
Note Loading...
Set Loading...
a 3 + b 3 + c 3 − 3 a b c = ( a + b + c ) ( a 2 + b 2 + c 2 − a b − b c − a c )
a 3 + b 3 + 1 3 − 3 a b . 1 = ( a + b + 1 ) ( a 2 + b 2 + 1 − a − b − a b )
a 3 + b 3 + 1 3 − 3 a b . 1 = ( 0 ) ( a 2 + b 2 + 1 − a − b − a b )
= 0
@Vivek Vijayan Nice problem