An algebra problem by Wildan Bagus Wicaksono

Algebra Level 2

Given the function f f so that f ( x ) + 2 f ( 1 x ) = 3 x f(x)+2f\left( \frac { 1 }{ x } \right) =3x , for every x 0 x\neq 0 . Find the sum of all values of x x that satisfy f ( x ) = f ( x ) f (x) = f (-x) .


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

f ( x ) + 2 f ( 1 x ) = 3 x . . . ( 1 f ( 1 x ) + 2 f ( x ) = 3 x f ( 1 x ) = 3 x 2 f ( x ) . . . ( 2 f(x)+2f\left( \frac { 1 }{ x } \right) =3x...(1\\ f\left( \frac { 1 }{ x } \right) +2f(x)=\frac { 3 }{ x } \\ f\left( \frac { 1 }{ x } \right) =\frac { 3 }{ x } -2f(x)...(2\\

Substitution of equation ( 2 (2 into equation ( 1 (1 .

f ( x ) + 2 { 3 x 2 f ( x ) } = 3 x f ( x ) + 6 x 4 f ( x ) = 3 x 3 f ( x ) = 3 x 6 x f ( x ) = 2 x x f(x)+2\left\{ \frac { 3 }{ x } -2f(x) \right\} =3x\\ f(x)+\frac { 6 }{ x } -4f(x)=3x\\ -3f(x)=3x-\frac { 6 }{ x } \\ f(x)=\frac { 2 }{ x } -x

Given f ( x ) = f ( x ) f(x)=f(-x) .

2 x x = 2 x ( x ) 2 x x = x 2 x 4 x = 2 x 2 x = x 2 = x 2 x 1 = 2 x 2 = 2 \frac { 2 }{ x } -x=\frac { 2 }{ -x } -(-x)\\ \frac { 2 }{ x } -x=x-\frac { 2 }{ x } \\ \frac { 4 }{ x } =2x\\ \frac { 2 }{ x } =x\\ 2={ x }^{ 2 }\\ { x }_{ 1 }=\sqrt { 2 } \\ { x }_{ 2 }=-\sqrt { 2 }

Thus, the sum of all values of x x is 2 + ( 2 ) = 0 \sqrt { 2 } +(-\sqrt { 2 } )=0 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...