An algebra problem by Wildan Bagus Wicaksono

Algebra Level 3

Let n 2017 n \ge 2017 and x x be natural numbers such that

3 n 2 3 ( n 2 ) 2 ( 3 2 n 2 + 1 ) ( 3 2 n 2 1 ) n 2 = 3 x \large \sqrt [ n-2 ]{ \frac { { 3 }^{ { n }^{ 2 } }-{ 3 }^{ { (n-2) }^{ 2 } } }{ \left( { 3 }^{ 2n-2 }+1 \right) { (3 }^{ 2n-2 }-1) } } ={ 3 }^{ x }

Determine the value of x n x - n .


The answer is -2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

3 x = 3 n 2 3 ( n 2 ) 2 ( 3 2 n 2 + 1 ) ( 3 2 n 2 1 ) n 2 Raise both sides to the power of n 2 3 x ( n 2 ) = 3 n 2 3 ( n 2 ) 2 ( 3 2 n 2 + 1 ) ( 3 2 n 2 1 ) = 3 n 2 3 n 2 4 n + 4 3 4 n 4 1 = 3 n 2 ( 1 3 4 n + 4 ) 3 4 n 4 1 Multiply up and down by 3 4 n 4 = 3 n 2 ( 3 4 n 4 1 ) 3 4 n 4 ( 3 4 n 4 1 ) = 3 n 2 3 4 n 4 = 3 n 2 4 n + 4 = 3 ( n 2 ) 2 \begin{aligned} 3^x & = \sqrt [n-2] {\frac {3^{n^2}-3^{(n-2)^2}}{\left(3^{2n-2}+1\right)\left(3^{2n-2}-1\right)}} & \small \color{#3D99F6} \text{Raise both sides to the power of }n-2 \\ 3^{x(n-2)} & = \frac {3^{n^2}-3^{(n-2)^2}}{\left(3^{2n-2}+1\right)\left(3^{2n-2}-1\right)} \\ & = \frac {3^{n^2}-3^{n^2-4n+4}}{3^{4n-4}-1} \\ & = \frac {3^{n^2}\left(1-3^{-4n+4}\right)}{3^{4n-4}-1} & \small \color{#3D99F6} \text{Multiply up and down by }3^{4n-4} \\ & = \frac {3^{n^2}\left(3^{4n-4}-1\right)}{3^{4n-4}\left(3^{4n-4}-1\right)} \\ & = \frac {3^{n^2}}{3^{4n-4}} \\ & = 3^{n^2-4n+4} \\ & = 3^{(n-2)^2} \end{aligned}

Therefore, we have:

3 x ( n 2 ) = 3 ( n 2 ) 2 x = n 2 x n = 2 \begin{aligned} 3^{x(n-2)} & = 3^{(n-2)^2} \\ x & = n-2 \\ \implies x-n & = \boxed{-2} \end{aligned}

3 n 2 3 ( n 2 ) 2 = 3 ( n 2 ) 2 ( 3 n 2 ( n 2 ) 2 1 ) 3 n 2 3 ( n 2 ) 2 = 3 ( n 2 ) 2 ( 3 ( n + n 2 ) ( n n + 2 ) 1 ) 3 n 2 3 ( n 2 ) 2 = 3 ( n 2 ) 2 ( 3 ( 2 n 2 ) 2 1 ) 3 n 2 3 ( n 2 ) 2 = 3 ( n 2 ) 2 ( 3 4 ( n 1 ) 1 ) 3 n 2 3 ( n 2 ) 2 = 3 ( n 2 ) 2 ( 3 2 ( n 1 ) + 1 ) ( 3 2 ( n 1 ) 1 ) { 3 }^{ { n }^{ 2 } }-{ 3 }^{ { (n-2) }^{ 2 } }={ 3 }^{ { (n-2) }^{ 2 } }\left( { 3 }^{ { n }^{ 2 }-{ (n-2) }^{ 2 } }-1 \right) \\ { 3 }^{ { n }^{ 2 } }-{ 3 }^{ { (n-2) }^{ 2 } }={ 3 }^{ { (n-2) }^{ 2 } }\left( { 3 }^{ (n+n-2)(n-n+2) }-1 \right) \\ { 3 }^{ { n }^{ 2 } }-{ 3 }^{ { (n-2) }^{ 2 } }={ 3 }^{ { (n-2) }^{ 2 } }\left( { 3 }^{ (2n-2)2 }-1 \right) \\ { 3 }^{ { n }^{ 2 } }-{ 3 }^{ { (n-2) }^{ 2 } }={ 3 }^{ { (n-2) }^{ 2 } }\left( { 3 }^{ 4(n-1) }-1 \right) \\ { 3 }^{ { n }^{ 2 } }-{ 3 }^{ { (n-2) }^{ 2 } }={ 3 }^{ { (n-2) }^{ 2 } }\left( { 3 }^{ 2(n-1) }+1 \right) \left( { 3 }^{ 2(n-1) }-1 \right)

3 x = 3 n 2 3 ( n 2 ) 2 ( 3 2 n 2 + 1 ) ( 3 2 n 2 1 ) n 2 3 x = 3 ( n 2 ) 2 ( 3 2 ( n 1 ) + 1 ) ( 3 2 ( n 1 ) 1 ) ( 3 2 n 2 + 1 ) ( 3 2 n 2 1 ) n 2 3 x = 3 ( n 2 ) 2 ( 3 2 ( n 1 ) + 1 ) ( 3 2 ( n 1 ) 1 ) ( 3 2 ( n 1 ) + 1 ) ( 3 2 ( n 1 ) 1 ) n 2 3 x = 3 ( n 2 ) 2 n 2 3 x = 3 n 2 x = n 2 x n = n 2 n x n = 2 \large { 3 }^{ x }=\sqrt [ n-2 ]{ \frac { { 3 }^{ { n }^{ 2 } }-{ 3 }^{ { (n-2) }^{ 2 } } }{ \left( { 3 }^{ 2n-2 }+1 \right) { (3 }^{ 2n-2 }-1) } } \\ \large { 3 }^{ x }=\sqrt [ n-2 ]{ \frac { { 3 }^{ { (n-2) }^{ 2 } }\left( { 3 }^{ 2(n-1) }+1 \right) \left( { 3 }^{ 2(n-1) }-1 \right) }{ \left( { 3 }^{ 2n-2 }+1 \right) { (3 }^{ 2n-2 }-1) } } \\ \large { 3 }^{ x }=\sqrt [ n-2 ]{ \frac { { 3 }^{ { (n-2) }^{ 2 } }\left( { 3 }^{ 2(n-1) }+1 \right) \left( { 3 }^{ 2(n-1) }-1 \right) }{ \left( { 3 }^{ 2(n-1) }+1 \right) { (3 }^{ 2(n-1) }-1) } } \\ \large { 3 }^{ x }=\sqrt [ n-2 ]{ { 3 }^{ { (n-2) }^{ 2 } } } \\ \large { 3 }^{ x }={ 3 }^{ n-2 }\\ \large x=n-2\\ \large x-n=n-2-n\\ \large x-n=-2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...