An algebra problem by Wildan Bagus Wicaksono

Algebra Level 3

x = a + 2 b + a 2 b a + 2 b a 2 b \large x = \frac {\sqrt{a+2b}+\sqrt{a-2b}}{\sqrt{a+2b}-\sqrt{a-2b}}

For x x as defined above, what is the numerical value of b x 2 a x + b bx^2 - ax + b ?


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jun 23, 2017

x = a + 2 b + a 2 b a + 2 b a 2 b = ( a + 2 b + a 2 b ) ( a + 2 b + a 2 b ) ( a + 2 b a 2 b ) ( a + 2 b + a 2 b ) = a + 2 b + 2 ( a + 2 b ) ( a 2 b ) + a 2 b a + 2 b a + 2 b = 2 a + 2 a 2 4 b 2 4 b = a + a 2 4 b 2 2 b \begin{aligned} x & = \frac {\sqrt{a+2b}+\sqrt{a-2b}}{\sqrt{a+2b}-\sqrt{a-2b}} \\ & = \frac {\left(\sqrt{a+2b}+\sqrt{a-2b}\right)\left(\sqrt{a+2b}+ \sqrt{a-2b}\right)}{\left(\sqrt{a+2b}-\sqrt{a-2b}\right)\left(\sqrt{a+2b}+\sqrt{a-2b}\right)} \\ & = \frac {a+2b+2\sqrt{(a+2b)(a-2b)}+a-2b}{a+2b-a+2b} \\ & = \frac {2a+2\sqrt{a^2-4b^2}}{4b} \\ & = \frac {a+\sqrt{a^2-4b^2}}{2b} \end{aligned}

We note that the roots of b x 2 a x + b = 0 bx^2-ax+b=0 are x = a ± a 2 4 b 2 2 b x = \dfrac {a \pm \sqrt{a^2-4b^2}}{2b} . This means that x = a + a 2 4 b 2 2 b x = \dfrac {a + \sqrt{a^2-4b^2}}{2b} is one of the roots, implying that b x 2 a x + b = 0 bx^2-ax+b=\boxed{0} .

Rajdeep Ghosh
Jun 25, 2017

Given x = a + 2 b + a 2 b a + 2 b a 2 b \large x = \frac {\sqrt{a+2b}+\sqrt{a-2b}}{\sqrt{a+2b}-\sqrt{a-2b}} or, 1 + x 1 x = a + 2 b a 2 b \large \frac{1+ x}{1- x} = \frac {\sqrt{a+2b}}{\sqrt{a-2b}} Squaring both sides, 1 + x 2 + 2 x 1 + x 2 2 x = a + 2 b a 2 b \large \frac{1+x^{2}+2x}{1+x^{2}-2x}=\frac{a+2b}{a-2b} or, a 2 b + a x 2 2 b x 2 + 2 a x 4 b x = a + 2 b + a x 2 + 2 b x 2 2 a x 4 b x \large a-2b+ax^{2}-2bx^{2}+2ax-4bx=a+2b+ax^{2}+2bx^{2}-2ax-4bx or, 4 b x 2 4 a x + 4 b = 0 \large 4bx^{2}-4ax+4b=0 or, b x 2 a x + b = 0 \large bx^{2}-ax+b=\boxed{0}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...