An algebra problem by Wildan Bagus Wicaksono

Algebra Level 3

A function f f is defined on the original number satisfying f ( 1 ) f (1) = 2017 = 2017 and f ( 1 ) + f ( 2 ) + f ( 3 ) + . . . + f ( n ) = n 2 f ( n ) f (1) + f (2) + f (3) + ... + f(n) = n ^ 2f (n) with n > 1 n > 1 . Determine the result of 2018 f ( 2017 ) 2018 \cdot f(2017) .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

f ( 1 ) = 2017 1 f(1) = \frac { 2017 }{ 1 }

f ( 1 ) + f ( 2 ) = 2 2 f ( 2 ) f ( 1 ) = 3 f ( 2 ) 2017 3 = f ( 2 ) f(1)+f(2)={ 2 }^{ 2 }f(2)\\ f(1)=3f(2)\\ \frac { 2017 }{ 3 } =f(2)

f ( 1 ) + f ( 2 ) + f ( 3 ) = 3 2 f ( 3 ) f ( 1 ) + f ( 2 ) = 8 f ( 3 ) 2017 3 + 2017 3 = 8 f ( 3 ) 2017 4 3 8 = f ( 3 ) 2017 6 = f ( 3 ) f(1)+f(2)+f(3)={ 3 }^{ 2 }f(3)\\ f(1)+f(2)=8f(3)\\ \frac { 2017\cdot 3+2017 }{ 3 } =8f(3)\\ \frac { 2017\cdot 4 }{ 3\cdot 8 } =f(3)\\ \frac { 2017 }{ 6 } =f(3)

f ( 1 ) + f ( 2 ) + f ( 3 ) + f ( 4 ) = 4 2 f ( 4 ) f ( 1 ) + f ( 2 ) + f ( 3 ) = 15 f ( 4 ) 2017 6 + 2017 2 + 2017 6 = 15 f ( 4 ) 2017 9 6 15 = f ( 4 ) 2017 10 = f ( 4 ) f(1)+f(2)+f(3)+f(4)={ 4 }^{ 2 }f(4)\\ f(1)+f(2)+f(3)=15f(4)\\ \frac { 2017\cdot 6+2017\cdot 2+2017 }{ 6 } =15f(4)\\ \frac { 2017\cdot 9 }{ 6\cdot 15 } =f(4)\\ \frac { 2017 }{ 10 } =f(4)

. . . ...

f ( 1 ) + f ( 2 ) + f ( 3 ) + . . . + f ( n ) = n 2 f ( n ) f(1)+f(2)+f(3)+...+f(n)={ n }^{ 2 }f(n) Notice the denominator of each fraction. The numbers form rows of 1, 3, 6, 10, .... The form of the sequence is the arithmetic sequence of level 2.

U n = a + ( n 1 ) b + ( n 1 ) ( n 2 ) c 2 ! { U }_{ n }=a+(n-1)b+\frac { (n-1)(n-2)c }{ 2! }

Thus the denominator of f ( 2017 ) f (2017) ,

U 2017 = 1 + ( 2017 1 ) 2 + ( 2017 1 ) ( 2017 2 ) 1 2 U 2017 = 1 + 2016 2 + 2016 2015 2 U 2017 = 1 + 2016 2 + 1008 2015 U 2017 = 1 + 1008 ( 2 2 + 2015 ) U 2017 = 1 + 1008 2019 U 2017 = 1 + 1008 ( 2018 + 1 ) U 2017 = 1 + 1008 2018 + 1008 U 2017 = 1009 + 1008 2018 U 2017 = 1009 ( 1 + 1008 2 ) U 2017 = 1009 ( 1 + 2016 ) U 2017 = 1009 2017 { U }_{ 2017 }=1+(2017-1)2+\frac { (2017-1)(2017-2)1 }{ 2 } \\ { U }_{ 2017 }=1+2016\cdot 2+\frac { 2016\cdot 2015 }{ 2 } \\ { U }_{ 2017 }=1+2016\cdot 2+1008\cdot 2015\\ { U }_{ 2017 }=1+1008(2\cdot 2+2015)\\ { U }_{ 2017 }=1+1008\cdot 2019\\ { U }_{ 2017 }=1+1008(2018+1)\\ { U }_{ 2017 }=1+1008\cdot 2018+1008\\ { U }_{ 2017 }=1009+1008\cdot 2018\\ { U }_{ 2017 }=1009(1+1008\cdot 2)\\ { U }_{ 2017 }=1009(1+2016)\\ { U }_{ 2017 }=1009\cdot 2017

So,

f ( 2017 ) = 2017 1009 2017 f ( 2017 ) = 1 1009 2018 f ( 2017 ) = 2018 1 1009 2018 f ( 2017 ) = 2 f(2017)=\frac { 2017 }{ 1009\cdot 2017 } \\ f(2017)=\frac { 1 }{ 1009 } \\ 2018\cdot f(2017)=2018\cdot \frac { 1 }{ 1009 } \\ 2018\cdot f(2017)=2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...