An algebra problem by William Isoroku

Algebra Level 2

For x > 0 x > 0 , what is the minimal value of

( x + 4 ) ( x + 1 ) x ? \sqrt{ \frac{ (x+4)(x+1) } { x } } ?


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Joel Tan
Dec 6, 2014

When x = 2 x=2 the expression (not equation as there is no equality) is equal to 3.

But ( x + 4 ) ( x + 1 ) x = x 2 + 5 x + 4 x = x + 5 + 4 x = ( x 2 x ) 2 + 9 9 \frac {(x+4)(x+1)}{x}=\frac {x^{2}+5x+4}{x}=x+5+\frac {4}{x}=(\sqrt {x}-\frac {2}{\sqrt {x}})^{2}+9 \geq 9 . The result follows.

Alternatively AM-GM on x , 4 x x, \frac {4}{x} can be used for the last step.

Ceesay Muhammed
Jan 9, 2015

B y A M G M , x + 4 2 4 x x + 1 2 x T h e r e f o r e , ( x + 4 ) ( x + 1 ) 8 x , D i v i d i n g b o t h s i d e s b y x , w e g e t ( x + 4 ) ( x + 1 ) / x 8 , T a k i n g s q u a r e r o o t s o f b o t h s i d e s g i v e s t h e d e s i r e d s o l u t i o n . A l t h o u g h , y o u d o n t a c t u a l l y g e t 3 By\quad AM-GM,\\ x+4\ge 2\sqrt { 4x } \\ x+1\ge 2\sqrt { x } \\ Therefore,\quad \left( x+4 \right) \left( x+1 \right) \ge 8x,\\ Dividing\quad both\quad sides\quad by\quad x,\quad we\quad get\quad \left( x+4 \right) \left( x+1 \right) /x\ge 8,\\ Taking\quad square\quad roots\quad of\quad both\quad sides\quad gives\quad the\quad desired\quad solution.\quad \\ Although,\quad you\quad don't\quad actually\quad get\quad 3

Aditya Desai
Jan 9, 2015

simplify inside the root and differentiate it put the derivative =0 and get value of x finally substitue and get the answer

Stanisław Kozik
Dec 11, 2014

I used the first derivative and as the domain is x>0 the only sign change occurs at x=2 from - to + . So f(2)=fmin.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...