( 7 − x ) ( 1 + x ) ( 1 − x ) 1 + ( x 2 − 1 ) ( x − 7 ) 3 x 2 − 1 8 x − 2 2 + x − 2 3 = ( x − 1 ) ( x − 2 ) 3
Find the number of real solution(s) satisfying the equation above.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
( 7 − x ) ( 1 + x ) ( 1 − x ) 1 + ( x 2 − 1 ) ( x − 7 ) 3 x 2 − 1 8 x − 2 2 + x − 2 3 = ( x − 1 ) ( x − 2 ) 3 − 1 ( x − 7 ) ( x + 1 ) ( − 1 ) ( x − 1 ) 1 + ( x + 1 ) ( x − 1 ) ( x − 7 ) 3 x 2 − 1 8 x − 2 2 = ( x − 1 ) ( x − 2 ) 3 − x − 2 3 ( x + 1 ) ( x − 1 ) ( x − 7 ) 3 x 2 − 1 8 x − 2 2 + 1 = ( x − 1 ) ( x − 2 ) 3 − 3 ( x − 1 ) ( 3 x 2 − 1 8 x − 2 1 ) ( x − 1 ) ( x − 2 ) = ( 3 − 3 x + 3 ) ( x + 1 ) ( x − 1 ) ( x − 7 ) 3 ( x 2 − 6 x − 7 ) ( x − 1 ) ( x − 2 ) = ( 6 − 3 x ) ( x + 1 ) ( x − 1 ) ( x − 7 ) 3 ( x − 7 ) ( x + 1 ) ( x − 1 ) ( x − 2 ) = − 3 ( x − 2 ) ( x + 1 ) ( x − 1 ) ( x − 7 ) 6 ( x − 2 ) ( x + 1 ) ( x − 1 ) ( x − 7 ) = 0 x = 2 , − 1 , 1 , 7
Notice that any of the roots given will result in one of the fractions in the equation to become undefined.
If x = 2 , x − 2 3 is undefined.
If x = 1 or x = − 1 or x = 7 , ( 7 − x ) ( 1 + x ) ( 1 − x ) 1 is undefined.
Therefore, this equation has no real solutions. The answer is 0