AN ALGEBRA QQQ.

Algebra Level 1

xy = ?????

122 61 ±122 17+4√144

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

I will derived my own identity.

( x + y ) 2 2 x y = x 2 + 2 x y + y 2 2 x y = x 2 + y 2 (x+y)^2-2xy=x^2+2xy+y^2-2xy=x^2+y^2 .

Now just plug in the given quantities in the derived formula. We have

1 7 2 2 x y = 167 17^2-2xy=167

2 x y = 1 7 2 167 = 122 2xy=17^2-167=122

Finally,

x y = 61 \color{#D61F06}\large \boxed{xy=61}

Hassan Raza
Aug 4, 2014

A s x + y = 17 . . . . . . . . . . . . . . . . ( i ) x 2 + y 2 = 167 . . . . . . . . . . . . ( i i ) T a k i n g S q u r e o f ( i ) , w e h a v e = > ( x 2 + y 2 ) + 2 x y = 289 = > ( 167 ) + 2 x y = 289 x 2 + y 2 = 167 = > 2 x y = 289 167 = > 2 x y = 122 = > x y = 122 2 S o , x y = 61 \qquad As\\ \qquad \qquad x+y=17\quad ................\quad (i)\\ \qquad \quad \quad { x }^{ 2 }+{ y }^{ 2 }=167\quad ............\quad (ii)\\ Taking\quad Squre\quad of\quad (i),\quad we\quad have\\ =>\qquad ({ x }^{ 2 }+{ y }^{ 2 })+2xy=289\\ =>\quad \quad \quad \quad (167)+2xy=289\quad \quad \quad \quad \because { x }^{ 2 }+{ y }^{ 2 }=167\\ =>\quad \quad \quad \quad 2xy=289-167\\ =>\quad \quad \quad \quad 2xy=122\\ =>\quad \quad \quad \quad \quad xy=\frac { 122 }{ 2 } \\ So,\quad \boxed { xy=61 }

Hansraj Sharma
Aug 3, 2014

x+y=17 x^2+y^2+2xy=289 2xy=289-167 xy=61

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...