⎩ ⎪ ⎨ ⎪ ⎧ tan ( x ) + tan ( y ) + tan ( z ) = 6 − ( cot ( x ) + cot ( y ) + cot ( z ) ) tan 2 ( x ) + tan 2 ( y ) + tan 2 ( z ) = 6 − ( cot 2 ( x ) + cot 2 ( y ) + cot 2 ( z ) ) tan 3 ( x ) + tan 3 ( y ) + tan 3 ( z ) = 6 − ( cot 3 ( x ) + cot 3 ( y ) + cot 3 ( z ) )
If x , y and z are real numbers that satisfy the three equations above. Find the value of the expression below.
⌊ tan ( y ) tan ( x ) + tan ( z ) tan ( y ) + tan ( x ) tan ( z ) + 3 tan ( x ) tan ( y ) tan ( z ) ⌋
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Elegant! Nicely Done.
Problem Loading...
Note Loading...
Set Loading...
Let tan x = a , tan y = b , tan z = c .
Given system is equal to
a + b + c = 6 − a 1 − b 1 − c 1
a 2 + b 2 + c 2 = 6 − a 2 1 − b 2 1 − c 2 1
a 3 + b 3 + c 3 = 6 − a 3 1 − b 3 1 − c 3 1 .
From second equation we complete squares to obtain
( a − a 1 ) 2 + ( b − b 1 ) 2 + ( c − c 1 ) 2 = 0
⇒ a = b = c = ± 1 .
Now rearranging 3rd equation and adding 3 time first equation we get
a 3 + b 3 + c 3 + a 3 1 + b 3 1 + c 3 1 + 3 ( a + a 1 + b + b 1 + c + c 1 ) = 6 + 1 8
( a + a 1 ) 3 + ( b + b 1 ) 3 + ( c + c 1 ) 3 = 2 4
Therefore a = b = c = 1 .