An algebra problem by naitik sanghavi

Algebra Level 5

f ( x ) + 2 f ( 1 x ) + 3 f ( x x 1 ) = x \large f(x) + 2 f\left( \dfrac1x \right) + 3 f\left( \dfrac x{x-1} \right) = x

Find the value of 16 f ( 4 ) 16f(4) .


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
May 17, 2017

Since the functions 1 ( x ) = x 1(x)= x , β ( x ) = 1 1 x \beta(x) = \tfrac{1}{1-x} , β 2 ( x ) = x 1 x \beta^2(x) = \tfrac{x-1}{x} , α ( x ) = 1 x \alpha(x) = \tfrac{1}{x} , α β ( x ) = 1 x \alpha\beta(x) = 1-x and α β 2 ( x ) = x x 1 \alpha\beta^2(x) = \tfrac{x}{x-1} form a group under composition, we can form (by substituting x x , β ( x ) \beta(x) , β 2 ( x ) \beta^2(x) , α ( x ) \alpha(x) , α β ( x ) \alpha\beta(x) and α β 2 ( x ) \alpha\beta^2(x) for x x ) a 6 × 6 6\times6 system of equations ( 1 0 0 2 0 3 0 1 0 3 2 0 0 0 1 0 3 2 2 3 0 1 0 0 0 2 3 0 1 0 3 0 2 0 0 1 ) ( f ( x ) f ( 1 1 x ) f ( x 1 x ) f ( 1 x ) f ( 1 x ) f ( x x 1 ) ) = ( x 1 1 x x 1 x 1 x 1 x x x 1 ) \left(\begin{array}{cccccc} 1 & 0 & 0 & 2 & 0 & 3 \\ 0 & 1 & 0 & 3 & 2 & 0 \\ 0 &0 & 1 & 0 & 3 & 2 \\ 2 & 3 & 0 & 1 & 0 & 0 \\ 0 & 2 & 3 & 0 & 1 & 0 \\ 3 & 0 & 2 & 0 & 0 & 1 \end{array}\right) \left( \begin{array}{c} f(x) \\ f\big(\tfrac{1}{1-x}\big) \\ f\big(\tfrac{x-1}{x}\big) \\ f\big(\tfrac{1}{x}\big) \\ f(1-x) \\ f\big(\tfrac{x}{x-1}\big) \end{array} \right) \; = \; \left( \begin{array}{c} x \\ \tfrac{1}{1-x} \\ \tfrac{x-1}{x} \\ \tfrac{1}{x} \\ 1-x \\ \tfrac{x}{x-1} \end{array} \right) Inverting this matrix we obtain f ( x ) = ( 1 0 0 0 0 0 ) ( 1 0 0 2 0 3 0 1 0 3 2 0 0 0 1 0 3 2 2 3 0 1 0 0 0 2 3 0 1 0 3 0 2 0 0 1 ) 1 ( x 1 1 x x 1 x 1 x 1 x x x 1 ) = 1 24 [ 3 x + 1 1 x + x 1 x + 3 x 5 ( 1 x ) + 7 x x 1 ] = 2 x 3 + x 2 + 5 x 2 24 x ( x 1 ) \begin{aligned} f(x) & = \big( 1 \;\; 0 \;\; 0 \;\;0 \;\;0 \;\;0\big)\left(\begin{array}{cccccc} 1 & 0 & 0 & 2 & 0 & 3 \\ 0 & 1 & 0 & 3 & 2 & 0 \\ 0 &0 & 1 & 0 & 3 & 2 \\ 2 & 3 & 0 & 1 & 0 & 0 \\ 0 & 2 & 3 & 0 & 1 & 0 \\ 3 & 0 & 2 & 0 & 0 & 1 \end{array}\right)^{-1}\left( \begin{array}{c} x \\ \tfrac{1}{1-x} \\ \tfrac{x-1}{x} \\ \tfrac{1}{x} \\ 1-x \\ \tfrac{x}{x-1} \end{array} \right) \\ & = \frac{1}{24}\Big[-3x + \frac{1}{1-x} + \frac{x-1}{x} + \frac{3}{x} - 5(1-x) + 7\frac{x}{x-1}\Big] \; = \; \frac{2x^3 + x^2 + 5x - 2}{24x(x-1)} \end{aligned} and hence f ( 4 ) = 9 16 f(4) = \tfrac{9}{16} , and so 16 f ( 4 ) = 9 16f(4) = \boxed{9} .

Hey naitik, isn't there any other way to handle the question?

Kanta Sharma - 4 years ago

Log in to reply

Well you could just substitute key values, 4 4 , 1 4 \tfrac14 , 3 -3 , 1 3 -\tfrac13 , 3 4 \tfrac34 , 4 3 \tfrac43 , and solve six equations for six numbers...

Mark Hennings - 4 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...