A function is defined as above for all real . Find .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
First we use the Feynman Technique to differentiate under the integral sign: g ′ ( y ) = d y d ∫ 0 ∞ e − x y x sin ( 2 0 1 8 x ) d x = ∫ 0 ∞ ∂ y ∂ e − x y x sin ( 2 0 1 8 x ) d x = − ∫ 0 ∞ e − x y sin ( 2 0 1 8 x ) d x . This integral is easily evaluated with integration by parts, doing this gives g ′ ( y ) = − y 2 + 2 0 1 8 2 2 0 1 8 , and integrating again will give us g : g ( y ) = − ∫ y 2 + 2 0 1 8 2 2 0 1 8 d y = − arctan ( 2 0 1 8 y ) + C . Now, notice that y → ∞ lim g ( y ) = 0 ⇒ 0 = − y → ∞ lim arctan ( 2 0 1 8 y ) + C ⇒ C = 2 π , so we can finally compute g ( 2 0 1 8 ) : g ( 2 0 1 8 ) = − arctan ( 1 ) + 2 π = 4 π .