An Amazing Integral!

Calculus Level 5

g ( y ) = 0 e x y sin ( 2018 x ) x d x \large g(y) = \int_0^\infty e^{-xy}\frac {\sin ( 2018x) }x dx

A function g g is defined as above for all real y > 0 y > 0 . Find g ( 2018 ) g(2018) .


The answer is 0.785.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Vincent Moroney
Jun 25, 2018

First we use the Feynman Technique to differentiate under the integral sign: g ( y ) = d d y 0 e x y sin ( 2018 x ) x d x = 0 y e x y sin ( 2018 x ) x d x = 0 e x y sin ( 2018 x ) d x . g'(y) = \frac{d}{dy}\int_0^{\infty} e^{-xy}\frac{\sin(2018x)}{x} \,dx = \int_0^{\infty}\frac{\partial}{\partial y} e^{-xy}\frac{\sin(2018x)}{x}\,dx = -\int_0^{\infty} e^{-xy}\sin(2018x)\,dx . This integral is easily evaluated with integration by parts, doing this gives g ( y ) = 2018 y 2 + 201 8 2 , g'(y) = -\frac{2018}{y^2+2018^2}, and integrating again will give us g g : g ( y ) = 2018 y 2 + 201 8 2 d y = arctan ( y 2018 ) + C . g(y) = -\int \frac{2018}{y^2+2018^2}\,dy = -\arctan\Big(\frac{y}{2018}\Big) + C . Now, notice that lim y g ( y ) = 0 0 = lim y arctan ( y 2018 ) + C C = π 2 , \lim_{y\to\infty} g(y) = 0 \Rightarrow 0 = -\lim_{y\to \infty}\arctan\Big(\frac{y}{2018}\Big) + C \Rightarrow C = \frac{\pi}{2}, so we can finally compute g ( 2018 ) g(2018) : g ( 2018 ) = arctan ( 1 ) + π 2 = π 4 . g(2018) = -\arctan(1) + \frac{\pi}{2} = \boxed{\frac{\pi}{4}}.

Did it the same way . But I think before you use lim y to infinity to the g(y). You should prove that the whole expression in terms of x is finite for any value of x..

Arghyadeep Chatterjee - 2 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...