An amazing Integral

Calculus Level 5

Evaluate the following integral

0 1 1 + x 2017 d x \displaystyle \large \int_{0}^{\infty} \dfrac{1}{1+x^{2017}} \, dx

If your answer comes in the form of π a b csc ( π c ) \dfrac{\pi^a}{b} \csc \left(\dfrac{\pi}{c}\right) where a , b , c a,b,c are positive integers then submit your answer as a + b + c a+b+c .


The answer is 4035.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Kushal Bose
May 29, 2017

First substitute x 2017 / 2 = tan z = > 2017 2 x 2015 / 2 d x = sec 2 ( z ) d z = > x 2015 / 2 d x = 2 2017 sec 2 ( z ) d z = > d x = 2 2017 1 x 2015 / 2 . sec 2 ( z ) d z = > d x = 2 2017 1 tan ( z ) 2015 / 2017 . sec 2 ( z ) d z x^{2017/2}=\tan z \\ => \dfrac{2017}{2} x^{2015/2} dx=\sec^2(z) dz \\ => x^{2015/2} dx=\dfrac{2}{2017}\sec^2(z)dz \\ =>dx=\dfrac{2}{2017} \dfrac{1}{x^{2015/2}} .\sec^2(z) dz \\ =>dx=\dfrac{2}{2017} \dfrac{1}{\tan(z)^{2015/2017}} .\sec^2(z) dz

Now using this into the integral

0 1 1 + x 2017 d x = 0 π / 2 2 2017 1 tan ( z ) 2015 / 2017 . sec 2 ( z ) . 1 sec 2 ( z ) d z = 1 2017 × 2 0 π / 2 sin ( z ) 2015 / 2017 . cos ( z ) 2015 / 2017 d z \displaystyle \int_{0}^{\infty} \dfrac{1}{1+x^{2017}} dx \\ =\displaystyle \int_{0}^{\pi/2} \dfrac{2}{2017} \dfrac{1}{\tan(z)^{2015/2017}} .\sec^2(z).\dfrac{1}{\sec^2(z)} dz \\ =\displaystyle \dfrac{1}{2017} \times 2 \int_{0}^{\pi/2} \sin(z)^{-2015/2017} . \cos(z)^{2015/2017} dz

Now using definition of Beta-Function we can write

= 1 2017 B ( 1 2017 , 2016 2017 ) =\dfrac{1}{2017} B(\dfrac{1}{2017},\dfrac{2016}{2017})

Then using the property Γ ( z ) Γ ( 1 z ) = π sin ( π z ) \Gamma(z) \Gamma(1-z)=\dfrac{\pi}{\sin (\pi z)} we get the value

= 1 2017 Γ ( 1 / 2017 ) Γ ( 1 1 / 2017 ) = π 2017 1 sin ( π / 2017 ) = π 2017 csc ( π / 2017 ) =\dfrac{1}{2017} \Gamma(1/ 2017) \Gamma(1-1/2017) \\ =\dfrac{\pi}{2017} \dfrac{1}{\sin (\pi/2017)} \\ =\dfrac{\pi}{2017} \csc (\pi/2017)

General result:

0 1 1 + x n d x = π n csc ( π n ) \int_0^{\infty} \dfrac{1}{1+x^n} \mathrm{d} x = \dfrac{\pi}{n} \csc \left( \dfrac{\pi}{n} \right)

P.S. There is one typo here,

1 2017 × 2 0 sin ( z ) 2015 / 2017 cos ( z ) 2015 / 2017 d z \dfrac{1}{2017} \times 2 \int_0^{\color{#D61F06} \infty} \sin(z)^{{-2015}/{2017}} \cdot \cos(z)^{{2015}/{2017}} \mathrm{d} z

should be π 2 \color{#D61F06} \dfrac{\pi}{2} .

Tapas Mazumdar - 4 years ago

Log in to reply

Thanks Tapas I have fixed this

In your generalised result is there any restriction on n n or it is valid for all n n ???

Kushal Bose - 4 years ago

Log in to reply

n must be greater than one for the integral to converge, but yes it is valid for all n>1

Aareyan Manzoor - 4 years ago

Used the same general result!!!! BTW Nice solution!!!

Exact same way as your.

Aditya Kumar - 4 years ago
First Last
May 29, 2017

Rewrite there integral in terms of a double integral:

0 1 1 + x n d x = 0 0 e t ( 1 + x n ) d x d t \displaystyle\int_0^\infty\frac1{1+x^n}dx=\int_0^\infty\int_0^\infty e^{-t(1+x^n)}dxdt

Now similar to solving a Gaussian, u = t x n u = tx^n , and the integral becomes

1 n 0 e u u 1 n 1 d u 0 e t t 1 n d t = \displaystyle\frac1{n}\int_0^\infty e^{-u}u^{\frac1{n}-1}du\int_0^\infty e^{-t}t^{\frac{-1}{n}}dt=

By using the definition of the gamma function and Euler's Reflection Formula,

Γ ( 1 n ) Γ ( 1 1 n ) n = π n sin ( π n ) \displaystyle\frac{\Gamma(\frac1{n})\Gamma(1-\frac1{n})}{n} = \frac{\pi}{n\sin(\frac{\pi}{n})}

Its great (+1)

Kushal Bose - 4 years ago
Aman Dubey
Jun 7, 2017

Let I = 0 1 1 + x 2017 = 0 1 1 1 + x 2017 + 1 1 1 + x 2017 I = \int_{0}^{\infty} \frac{1}{1+x^{2017}}=\int_{0}^{1} \frac{1}{1+x^{2017}}+\int_{1}^{\infty} \frac{1}{1+x^{2017}}

Now, let I 1 = 0 1 1 1 + x 2017 = 0 1 ( 1 x 2017 + x 2 2017 x 3 2017 + . . . ) d x I_{1}=\int_{0}^{1} \frac{1}{1+x^{2017}} =\int_{0}^{1}(1-x^{2017}+x^{2*2017}-x^{3*2017}+...)dx

I 1 = 1 + 1 ( 1 ) n 2017 n + 1 I_{1}=1+\sum_1^\infty \frac{(-1)^n}{2017n+1}

Again let I 2 = 1 d x 1 + x 2017 = 1 d x x 2017 ( 1 + 1 x 2017 ) = 1 d x x 2017 ( 1 x 2017 + x 2 2017 . . . ) I_{2}=\int_{1}^{\infty} \frac{dx}{1+x^{2017}}=\int_{1}^{\infty}\frac{dx}{x^{2017}(1+\frac{1}{x^{2017}})}=\int_{1}^{\infty}\frac{dx}{x^{2017}}(1-x^{-2017}+ x^{-2*2017}-...)

I 2 = 1 ( 1 ) n + 1 2017 n 1 I_{2}=\sum_1^\infty \frac{(-1)^{n+1}}{2017n-1}

So I = I 1 + I 2 = 1 + 1 ( ( 1 ) n + 1 2017 n 1 ( 1 ) n + 1 2017 n + 1 ) = 1 + 1 ( 2 ( 1 ) n + 1 ( 2017 n ) 2 1 I = I_{1}+I_{2} = 1+\sum_1^\infty(\frac{(-1)^{n+1}}{2017n-1}-\frac{(-1)^{n+1}}{2017n+1})=1+\sum_1^\infty(\frac{2(-1)^{n+1}}{(2017n)^{2}-1} _ _ _ _ _ _ _ _ _ _ _ _ _ _ (*)

Since we know sin ( x ) = x ( 1 x 2 π 2 ) ( 1 x 2 ( 2 π ) 2 ) . . . \sin(x)=x(1-\frac{x^2}{\pi^2})(1-\frac{x^2}{(2\pi)^2})... taking log and differentiating with respect to x both sides we get

cot ( x ) = 1 x 2 1 x ( n π ) 2 x \cot(x)= \frac{1}{x}-2\sum_1^\infty\frac{x}{(n\pi)^2-x}

Using this we can show that 1 2 ( 1 ) n + 1 ( 2017 n ) 2 1 \sum_1^\infty\frac{2(-1)^{n+1}}{(2017n)^{2}-1} = 1 + π 2017 ( c o t ( π 2 2017 ) c o t ( π 2017 ) ) -1+\frac{\pi}{2017}(cot(\frac{\pi}{2*2017})-cot(\frac{\pi}{2017}) )

Substituting this in (*) we get I = π 2017 ( c o t ( π 2 2017 ) c o t ( π 2017 ) ) I = \frac{\pi}{2017}(cot(\frac{\pi}{2*2017})-cot(\frac{\pi}{2017}) )

On Simplifying this we get I = π 2017 c o s e c ( π 2017 ) I = \frac{\pi}{2017}cosec(\frac{\pi}{2017}) so answer is 1 + 2017 + 2017 = 4035 1+ 2017+2017 = 4035

Aakash Khandelwal
May 29, 2017

Nice 👍 application of gamma , beta function and euler reflection formula

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...