An Arctangent Integral

Calculus Level 5

The following integral evaluates to:

0 1 tan 1 x 2 d x = 1 2 ln ( 1 + a 1 a ) a + π 2 ( 1 2 a ) \int_{0}^{1} \tan^{-1} {x^2} dx = \frac{1}{2} \ln{ \bigg( \frac{1+a}{1-a}} \bigg)^{a} + \frac{\pi}{2} \bigg( \frac{1}{2}-a \bigg)

Where a > 1 2 a > \frac{1}{2} . What is a a ?


The answer is 0.707106781.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Naren Bhandari
Aug 16, 2018

Call the integral I = arc tan x 2 d x = x arc tan x 2 2 x 2 1 + x 4 d x Integration by parts I = x tan 1 x 2 { 1 2 tan 1 ( x 2 1 2 x ) + 1 2 2 ln [ x 2 + 1 2 x x 2 + 1 + 2 x ] } See notes + C \begin{aligned} I & = \int \text{arc}\tan x^2 \,dx \\ & = \underbrace{x \text{arc} \tan x^2 - \int \dfrac{2x^2}{1+x^4}\,dx}_{\text{Integration by parts}} \\ \therefore I & = x\tan ^{-1} x^2 -\underbrace{\left\{\dfrac{1}{\sqrt 2} \tan^{-1}\left(\dfrac{x^2-1}{ 2\sqrt x}\right) +\dfrac{1}{2\sqrt 2 }\ln\left[\dfrac{x^2+1-\sqrt 2 x }{x^2+1+\sqrt 2 x }\right]\right\}}_{\text{See notes}}+ C\end{aligned} Setting the limits we can find 0 1 tan 1 x 2 d x = π 4 { π 2 2 + π 2 2 + 1 2 2 ln 2 2 2 + 2 } = 1 2 2 ln 2 2 2 + 2 π 4 2 ( 2 2 ) = 1 2 ( ln 1 + 1 2 1 1 2 ) 1 2 + π 2 ( 1 2 1 2 ) \begin{aligned} \int_{0}^{1} \tan ^{-1} x^2\,dx & = \dfrac{\pi}{4}- \left\{ \dfrac{\pi }{2\sqrt 2 }+ \dfrac{\pi}{2\sqrt 2}+\dfrac{1}{2\sqrt2}\ln \dfrac{2-\sqrt 2}{2 +\sqrt 2}\right\} \\ & =-\dfrac{1}{2\sqrt 2} \ln \dfrac{2-\sqrt 2}{2 +\sqrt 2}- \dfrac{\pi}{4\sqrt 2}\left(\sqrt 2 -2\right)\\ & = \dfrac{1}{2}\left( \ln \dfrac{1+\frac{1}{\sqrt 2}}{1-\frac{1}{\sqrt 2}}\right)^{\frac{1}{\sqrt2}}+ \dfrac{\pi}{2}\left(\frac{1}{2}-\frac{1}{\sqrt 2} \right) \end{aligned} Therefore, required of a = 1 2 0.707 a =\frac{1}{\sqrt 2} \approx \boxed{0.707} .


Note:

x 2 1 + x 4 d x = 1 2 ( x 2 + 1 1 + x 4 + x 2 1 1 + x 4 ) d x = 1 2 ( 1 + 1 x 2 x 2 + 1 x 2 + 1 1 x 2 x 2 + 1 x 2 ) d x = 1 2 ( 1 + 1 x 2 ( x 1 x ) 2 + 2 + 1 1 x 2 ( x + 1 x ) 2 2 ) d x \begin{aligned} \int \dfrac{x^2}{1+x^4}\,dx & =\dfrac{1}{2}\int\left(\dfrac{x^2+1}{1+x^4}+ \dfrac{x^2-1}{1+x^4} \right)\,dx\\& = \dfrac{1}{2}\int\left(\dfrac{1+\frac{1}{x^2} }{x^2+\frac{1}{x^2} }+ \dfrac{1-\frac{1}{x^2} }{x^2+\frac{1}{x^2} } \right)\,dx \\ & =\dfrac{1}{2}\int\left(\dfrac{1+\frac{1}{x^2} }{\,(x-\frac{1}{x})^2 +2 }+ \dfrac{1-\frac{1}{x^2} }{{\,(x+\frac{1}{x})^2 -2} } \right)\,dx\end{aligned} Substitute x 1 x = t 1 + 1 x 2 = d t x -\frac{1}{x} = t \implies 1+\frac{1}{x^2}=\,dt and x + 1 x = u 1 1 x 2 = d u x +\frac{1}{x} = u\implies 1-\frac{1}{x^2}=\,du . We have then 2 x 2 1 + x 4 = 2 2 ( d t t 2 + 2 + d u u 2 2 ) = ( 1 2 tan 1 ( x 2 1 2 x ) + 1 2 2 ln [ x 2 + 1 2 x x 2 + 1 + 2 x ] ) + C \begin{aligned} \int \dfrac{2x^2}{1+x^4} & = \dfrac{2}{2}\int \left( \dfrac{\,dt}{ t^2 +2} +\dfrac{\,du}{u^2-2}\right) \\& = \left(\dfrac{1}{\sqrt 2}\tan^{-1} \left(\dfrac{x^2-1}{2\sqrt x}\right)+\dfrac{1}{2\sqrt 2}\ln\left[\dfrac{x^2+1-\sqrt 2 x}{x^2+1+\sqrt 2 x}\right]\right)+C \end{aligned}

Love the two substitutions instead of the partial fractions method! Well done

Denis Kartachov - 2 years, 9 months ago
Chew-Seong Cheong
Aug 17, 2018

I = 0 1 tan 1 x 2 d x By integration by parts = x tan 1 x 2 0 1 0 1 2 x 2 x 4 + 1 d x = π 4 0 1 2 x 2 ( x 2 2 x + 1 ) ( x 2 + 2 x + 1 ) d x By partial fraction decomposition = π 4 0 1 1 2 ( x x 2 2 x + 1 x x 2 + 2 x + 1 ) d x \begin{aligned} I & = \int_0^1 \tan^{-1} x^2 \ dx & \small \color{#3D99F6} \text{By integration by parts} \\ & = x \tan^{-1} x^2 \bigg|_0^1 - \int_0^1 \frac {2x^2}{x^4+1} dx \\ & = \frac \pi 4 - \color{#3D99F6} \int_0^1 \frac {2x^2}{(x^2-\sqrt 2x+1)(x^2+\sqrt 2x +1)} dx & \small \color{#3D99F6} \text{By partial fraction decomposition} \\ & = \frac \pi 4 - \color{#3D99F6} \int_0^1 \frac 1{\sqrt 2}\left(\frac x{x^2-\sqrt 2x+1} - \frac x{x^2+\sqrt 2x+1}\right) dx \end{aligned}

= π 4 1 2 2 0 1 ( 2 x 2 x 2 2 x + 1 2 x + 2 x 2 + 2 x + 1 ) d x 1 2 0 1 ( 1 x 2 2 x + 1 + 1 x 2 + 2 x + 1 ) d x = π 4 1 2 2 ln ( x 2 2 x + 1 x 2 + 2 x + 1 ) + 1 2 ( tan 1 ( 1 2 x ) tan 1 ( 1 + 2 x ) ) 0 1 = π 4 + 1 2 2 ln ( 2 + 2 2 2 ) + 1 2 tan 1 2 x 1 x 2 0 1 = π 4 + 1 2 2 ln ( 1 + 1 2 1 1 2 ) π 2 2 = 1 2 ln ( 1 + 1 2 1 1 2 ) 1 2 + π 2 ( 1 2 1 2 ) \begin{aligned} \ \ & = \frac \pi 4 - \frac 1{2\sqrt 2} \int_0^1 \left(\frac {2x-\sqrt 2}{x^2-\sqrt 2x+1} - \frac {2x+\sqrt 2}{x^2+\sqrt 2x+1}\right) dx - \frac 12 \int_0^1 \left(\frac 1{x^2-\sqrt 2x+1} + \frac 1{x^2+\sqrt 2x+1}\right) dx \\ & = \frac \pi 4 - \frac 1{2\sqrt 2} \ln \left(\frac {x^2-\sqrt 2x+1}{x^2+\sqrt 2x+1}\right) + \frac 1{\sqrt 2}\left(\tan^{-1} (1-\sqrt 2x) - \tan^{-1} (1+\sqrt 2x) \right) \bigg|_0^1 \\ & = \frac \pi 4 + \frac 1{2\sqrt 2} \ln \left(\frac {2+\sqrt 2}{2-\sqrt 2}\right) + \frac 1{\sqrt 2} \tan^{-1} \frac {-\sqrt 2x}{1-x^2} \bigg|_0^1 \\ & = \frac \pi 4 + \frac 1{2\sqrt 2} \ln \left(\frac {1+\frac 1{\sqrt 2}}{1-\frac 1{\sqrt 2}}\right) - \frac \pi {2\sqrt 2} \\ & = \frac 12 \ln \left(\frac {1+\frac 1{\sqrt 2}}{1-\frac 1{\sqrt 2}}\right)^{\frac 1{\sqrt 2}} + \frac \pi 2\left(\frac 12 - \frac 1{\sqrt 2}\right) \end{aligned}

Therefore a = 1 2 0.707 a = \dfrac 1{\sqrt 2} \approx \boxed{0.707} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...