The following integral evaluates to:
∫ 0 1 tan − 1 x 2 d x = 2 1 ln ( 1 − a 1 + a ) a + 2 π ( 2 1 − a )
Where a > 2 1 . What is a ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Love the two substitutions instead of the partial fractions method! Well done
I = ∫ 0 1 tan − 1 x 2 d x = x tan − 1 x 2 ∣ ∣ ∣ ∣ 0 1 − ∫ 0 1 x 4 + 1 2 x 2 d x = 4 π − ∫ 0 1 ( x 2 − 2 x + 1 ) ( x 2 + 2 x + 1 ) 2 x 2 d x = 4 π − ∫ 0 1 2 1 ( x 2 − 2 x + 1 x − x 2 + 2 x + 1 x ) d x By integration by parts By partial fraction decomposition
= 4 π − 2 2 1 ∫ 0 1 ( x 2 − 2 x + 1 2 x − 2 − x 2 + 2 x + 1 2 x + 2 ) d x − 2 1 ∫ 0 1 ( x 2 − 2 x + 1 1 + x 2 + 2 x + 1 1 ) d x = 4 π − 2 2 1 ln ( x 2 + 2 x + 1 x 2 − 2 x + 1 ) + 2 1 ( tan − 1 ( 1 − 2 x ) − tan − 1 ( 1 + 2 x ) ) ∣ ∣ ∣ ∣ 0 1 = 4 π + 2 2 1 ln ( 2 − 2 2 + 2 ) + 2 1 tan − 1 1 − x 2 − 2 x ∣ ∣ ∣ ∣ 0 1 = 4 π + 2 2 1 ln ( 1 − 2 1 1 + 2 1 ) − 2 2 π = 2 1 ln ( 1 − 2 1 1 + 2 1 ) 2 1 + 2 π ( 2 1 − 2 1 )
Therefore a = 2 1 ≈ 0 . 7 0 7 .
Problem Loading...
Note Loading...
Set Loading...
Call the integral I ∴ I = ∫ arc tan x 2 d x = Integration by parts x arc tan x 2 − ∫ 1 + x 4 2 x 2 d x = x tan − 1 x 2 − See notes { 2 1 tan − 1 ( 2 x x 2 − 1 ) + 2 2 1 ln [ x 2 + 1 + 2 x x 2 + 1 − 2 x ] } + C Setting the limits we can find ∫ 0 1 tan − 1 x 2 d x = 4 π − { 2 2 π + 2 2 π + 2 2 1 ln 2 + 2 2 − 2 } = − 2 2 1 ln 2 + 2 2 − 2 − 4 2 π ( 2 − 2 ) = 2 1 ( ln 1 − 2 1 1 + 2 1 ) 2 1 + 2 π ( 2 1 − 2 1 ) Therefore, required of a = 2 1 ≈ 0 . 7 0 7 .
Note:
∫ 1 + x 4 x 2 d x = 2 1 ∫ ( 1 + x 4 x 2 + 1 + 1 + x 4 x 2 − 1 ) d x = 2 1 ∫ ( x 2 + x 2 1 1 + x 2 1 + x 2 + x 2 1 1 − x 2 1 ) d x = 2 1 ∫ ( ( x − x 1 ) 2 + 2 1 + x 2 1 + ( x + x 1 ) 2 − 2 1 − x 2 1 ) d x Substitute x − x 1 = t ⟹ 1 + x 2 1 = d t and x + x 1 = u ⟹ 1 − x 2 1 = d u . We have then ∫ 1 + x 4 2 x 2 = 2 2 ∫ ( t 2 + 2 d t + u 2 − 2 d u ) = ( 2 1 tan − 1 ( 2 x x 2 − 1 ) + 2 2 1 ln [ x 2 + 1 + 2 x x 2 + 1 − 2 x ] ) + C