An Area Problem

Geometry Level 3

In the diagram above, the smaller and the larger squares have side lengths 4 4 and a a respectively.

Find the value of a a for which the area of the red region is 88 15 \dfrac{88}{15} .


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Rocco Dalto
Nov 5, 2020

m A C = a 4 y = a 4 x m_{AC} = \dfrac{a}{4} \implies y = \dfrac{a}{4}x and B D \overleftrightarrow{BD} is y = 4 a x 4 = 4 x = 16 a y = 4 \implies \dfrac{ax}{4} = 4 \implies x = \dfrac{16}{a} \implies

P : ( 16 a , 4 ) P:(\dfrac{16}{a},4)

m A E = a 4 + a y = a 4 + a x m_{AE} = \dfrac{a}{4 + a} \implies y = \dfrac{a}{4 + a}x and C F \overleftrightarrow{CF} is x = 4 y = 4 a 4 + a x = 4 \implies y = \dfrac{4a}{4 + a} \implies

Q : ( 4 , 4 a 4 + a ) Q:(4,\dfrac{4a}{4 + a})

A A B P = 1 2 ( A B ) ( B P ) = 2 B P = 2 ( 16 a ) = 32 a A_{\triangle{ABP}} = \dfrac{1}{2}(AB)(BP) = 2BP = 2(\dfrac{16}{a}) = \dfrac{32}{a}

A A Q F = 1 2 ( A F ) ( Q F ) = 2 Q F = 2 ( 4 a 4 + a ) = 8 a 4 + a A_{\triangle{AQF}} = \dfrac{1}{2}(AF)(QF) = 2QF = 2(\dfrac{4a}{4 + a}) = \dfrac{8a}{4 + a}

A A B D F = 16 A_{ABDF} = 16

\implies The total area A T = 88 15 = 16 ( 32 a + 8 a 4 + a ) = A_{T} = \dfrac{88}{15} = 16 - (\dfrac{32}{a} + \dfrac{8a}{4 + a}) = 8 ( a 2 + 4 a 16 a ( a + 4 ) ) 8(\dfrac{a^2 + 4a - 16}{a(a + 4)}) \implies

a 2 + 4 a 16 a ( a + 4 ) = 11 15 15 a 2 + 60 a 240 = 44 a + 11 a 2 \dfrac{a^2 + 4a - 16}{a(a + 4)} = \dfrac{11}{15} \implies 15a^2 + 60a - 240 = 44a + 11a^2 \implies

4 a 2 + 16 a 240 = 0 a 2 + 4 a 60 = 0 ( a 6 ) ( a + 10 ) = 0 4a^2 + 16a - 240 = 0 \implies a^2 + 4a - 60 = 0 \implies (a - 6)(a + 10) = 0

and a 10 a = 6 a \neq -10 \implies a = \boxed{6}

Label the figure as shown. Then we note that the area of the red region is given by

[ A B C ] [ A F G ] [ B C H ] = 88 15 [ABC] - [AFG] - [BCH] = \frac {88}{15}

[ A B C ] = 4 a 2 = 2 a [ABC] = \dfrac {4a}2 = 2a . Since A F G \triangle AFG and A B C \triangle ABC are similar, we have [ A F G ] = A G 2 A C 2 × [ A B C ] = ( a 4 ) 2 a 2 × 2 a = 2 ( a 4 ) 2 a [AFG] = \dfrac {AG^2}{AC^2} \times [ABC] = \dfrac {(a-4)^2}{a^2} \times 2a = \dfrac {2(a-4)^2}a . Again B C H \triangle BCH and B D E \triangle BDE are similar, [ B C H ] = B C 2 B D 2 × [ B D E ] = 4 2 ( a + 4 ) 2 × a ( a + 4 ) 2 = 8 a a + 4 [BCH] = \dfrac {BC^2}{BD^2} \times [BDE] = \dfrac {4^2}{(a+4)^2} \times \dfrac {a(a+4)}2 = \dfrac {8a}{a+4} . Then we have:

2 a 2 ( a 4 ) 2 a 8 a a + 4 = 88 15 2 a 2 a + 16 32 a 8 a a + 4 = 88 15 2 4 a a a + 4 = 11 15 4 a + 16 + a 2 a 2 + 4 a = 2 11 15 1 + 16 a 2 + 4 a = 2 11 15 16 a 2 + 4 a = 4 15 4 a 2 + 4 a = 1 15 a 2 + 4 a 60 = 0 ( a 6 ) ( a + 10 ) = 0 Since a > 0 a = 6 \begin{aligned} 2a - \frac {2(a-4)^2}a - \frac {8a}{a+4} & = \frac {88}{15} \\ 2a - 2a + 16 - \frac {32}a - \frac {8a}{a+4} & = \frac {88}{15} \\ 2 - \frac 4a - \frac a{a+4} & = \frac {11}{15} \\ \frac {4a + 16 + a^2}{a^2+4a} & = 2 - \frac {11}{15} \\ 1 + \frac {16}{a^2 + 4a} & = 2 - \frac {11}{15} \\ \frac {16}{a^2 + 4a} & = \frac 4{15} \\ \frac 4{a^2 + 4a} & = \frac 1{15} \\ a^2 + 4a - 60 & = 0 \\ (a-6)(a + 10) & = 0 & \small \blue{\text{Since }a > 0} \\ \implies a & = \boxed 6 \end{aligned}

With the labelling shown on the figure, we have

\ \

A B I A E F I B F E = A B A E x a = 4 4 + a x = 4 a 4 + a \triangle ABI\sim \triangle AEF\Rightarrow \dfrac{IB}{FE}=\dfrac{AB}{AE}\Rightarrow \dfrac{x}{a}=\dfrac{4}{4+a}\Rightarrow x=\dfrac{4a}{4+a}

G H C G A B H C A B = G C G B y 4 = a 4 a y = 4 ( a 4 ) a \triangle GHC\sim \triangle GAB\Rightarrow \dfrac{HC}{AB}=\dfrac{GC}{GB}\Rightarrow \dfrac{y}{4}=\dfrac{a-4}{a}\Rightarrow y=\dfrac{4(a-4)}{a}

\ \

[ A H C I ] = [ A H C ] + [ A C I ] = 1 2 H C A D + 1 2 C I A B = 1 2 [ 4 y + 4 ( 4 x ) ] = 2 y 2 x + 8 \begin{aligned} \left[ AHCI \right] & =\left[ AHC \right]+\left[ ACI \right] \\ & =\dfrac{1}{2}HC\cdot AD+\dfrac{1}{2}CI\cdot AB \\ & =\dfrac{1}{2}\left[ 4y+4\left( 4-x \right) \right] \\ & =2y-2x+8 \\ \end{aligned}

Combining we get

2 4 ( a 4 ) a 2 4 a 4 + a + 8 = 88 15 a 2 + 4 a 60 = 0 a > 0 a = 6 . 2\dfrac{4\left( a-4 \right)}{a}-2\dfrac{4a}{4+a}+8=\dfrac{88}{15}\Leftrightarrow \ldots \Leftrightarrow {{a}^{2}}+4a-60=0\overset{a>0}{\mathop{\Leftrightarrow }}\,\boxed{a=6}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...