An Area Problem

Geometry Level 5

A B C ABC is an equilateral triangle. Vertices A A and B B are on a circle with center O O and radius r r . The circle Intersects A B C \triangle ABC at points D D and F F . If A O B = 15 0 \angle AOB=150^\circ and D C = r |DC|=\sqrt{r} , find the area of B D F \triangle BDF .


The answer is 4.415.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chew-Seong Cheong
Jan 31, 2020

Since A O B = 15 0 \angle AOB = 150^\circ , B A O = 1 5 \angle BAO = 15^\circ and O A D = 6 0 1 5 = 4 5 \angle OAD = 60^\circ - 15^\circ = 45^\circ . Therefore, A O D = 9 0 \angle AOD = 90^\circ and A D = 2 r AD = \sqrt 2 r and the side length of equilateral A B C \triangle ABC , A C = 2 r + r AC = \sqrt 2 r + \sqrt r . Area of A B C \triangle ABC , [ A B C ] = 3 ( 2 r + r ) 2 4 [ABC] = \dfrac {\sqrt 3(\sqrt 2r+\sqrt r)^2}4 .

Since B C D \triangle BCD has the same height as A B C \triangle ABC , so its area [ B C D ] = 3 ( 2 r + r ) 2 4 × r 2 r + r = r 6 r + 3 r 4 [BCD] = \dfrac {\sqrt 3(\sqrt 2r+\sqrt r)^2}4 \times \dfrac {\sqrt r}{\sqrt 2 r + \sqrt r} = \dfrac {r\sqrt {6r} + \sqrt 3 r}4 .

And area of B D F \triangle BDF , [ B D F ] = [ B C D ] [ C D F ] = r 6 r + 3 r 4 3 r 4 = r 6 r 4 [BDF] = [BCD]-[CDF] = \dfrac {r\sqrt {6r} + \sqrt 3 r}4 - \dfrac {\sqrt 3 r}4 = \dfrac {r\sqrt {6r}}4 .

From A B = A C AB = AC we have:

2 r sin 7 5 = 2 r + r 2 r × 3 + 1 2 2 = 2 r + r ( 3 + 1 2 2 ) r = r r = 2 3 1 = 3 + 1 2 \begin{aligned} 2 r \sin 75^\circ & = \sqrt 2 r + \sqrt r \\ 2r \times \frac {\sqrt 3+1}{2\sqrt 2} & = \sqrt 2 r + \sqrt r \\ \left(\frac {\sqrt 3+1}{\sqrt 2} - \sqrt 2\right)r & = \sqrt r \\ \implies \sqrt r & = \frac {\sqrt 2}{\sqrt 3 - 1} = \frac {\sqrt 3+1}{\sqrt 2} \end{aligned}

Therefore [ B D F ] = r 6 r 4 = ( 3 + 1 2 ) 3 × 6 4 = 9 + 5 3 4 4.415 [BDF] = \dfrac {r\sqrt{6r}}4 = \left(\dfrac {\sqrt 3+1}{\sqrt 2}\right)^3 \times \dfrac {\sqrt 6}4 = \dfrac {9+5\sqrt 3}4 \approx \boxed{4.415}

umm.. help..

Syed Hamza Khalid - 1 year, 4 months ago
İlker Can Erten
Jan 30, 2020

O A B = 18 0 15 0 2 = 1 5 \angle OAB=\dfrac{180^\circ-150^\circ}{2}=15^\circ Hence O A D = 4 5 = O D A A O D = 18 0 ( 4 5 + 4 5 ) = 9 0 \angle OAD=45^\circ=\angle ODA\Rightarrow \angle AOD=180^\circ-(45^\circ+45^\circ)=90^\circ Similarly B O F = 9 0 \angle BOF=90^\circ , D O F = 36 0 15 0 9 0 9 0 = 3 0 \angle DOF=360^\circ-150^\circ-90^\circ-90^\circ=30^\circ

Since A D = B F = r 2 |AD|=|BF|=r \sqrt{2} ( 4 5 4 5 9 0 45^\circ-45^\circ-90^\circ triangle) , D F C DFC is equilateral . Applying Law of cosines on O D F ODF :

r = r 2 ( 2 2 c o s 3 0 ) r=r^{2}(2-2cos30^\circ)

1 r = 2 3 \dfrac{1}{r}=2-\sqrt{3}

r = 2 + 3 r=2+\sqrt{3}

Area of B D F BDF is 1 2 B F h \dfrac{1}{2}|BF|h . and h = 3 r 2 h=\dfrac{\sqrt{3r}}{2} (heigth of equilateral D F C DFC ) , B F = r 2 |BF|=r\sqrt{2}

Hence the area is r 6 r 4 \dfrac{r\sqrt{6r}}{4} putting r = 2 + 3 r=2+\sqrt{3} we get ( 2 + 3 ) 12 + 2 27 4 \dfrac{(2+\sqrt{3})\sqrt{12+2\sqrt{27}}}{4}

(using a + b + 2 a b = a + b \sqrt{a+b+2\sqrt{ab}}= \sqrt{a}+\sqrt{b} ) , ( 2 + 3 ) 12 + 2 27 4 = ( 2 + 3 ) ( 3 + 3 ) 4 \dfrac{(2+\sqrt{3})\sqrt{12+2\sqrt{27}}}{4}=\dfrac{(2+\sqrt{3})(3+\sqrt{3})}{4}

= 9 + 5 3 4 4.415 =\boxed{\dfrac{9+5\sqrt{3}}{4}\approx 4.415}

another solution: Since D B F = 1 5 \angle DBF=15^\circ and B D = r 3 |BD|=r\sqrt{3} ( 12 0 3 0 3 0 120^\circ-30^\circ-30^\circ triangle) area is 1 2 sin 1 5 r 3 r 2 \dfrac{1}{2}\sin{15^\circ}\cdot r\sqrt{3}\cdot r\sqrt{2} put r = 2 + 3 r=2+\sqrt{3} and sin 1 5 = 6 2 4 \sin{15^\circ}=\dfrac{\sqrt{6}-\sqrt{2}}{4} and you will get : 9 + 5 3 4 \boxed{\dfrac{9+5\sqrt{3}}{4}}

B A C = 60.... E q u . Δ . A O B = 150. O A = O B = r . S o i n i s o s c e l e s Δ O A B , B A O = 180 150 2 = 15. S o Δ s i d e s A B = A C = s a y S = 2 r C o s 15.......... ( 1 ) O A D = 60 15 = 45. B u t i n Δ O A D , O A = O D = r . S o D O A = 90 , a n d A D = 2 r . . . . . . . . ( 2 ) . B u t A D = A C r = 2 r C o s 15 r . . . . B y ( 1 ) S o 2 r = 2 r C o s 15 r . S o l v i n g r = 3.7321. A r e a Δ B D F = 1 / 2 r F B S i n 120 o f s y m m e t r y F B = A D = 2 r S o a r e a = 4.41515 . \angle~BAC=60....Equ.~\Delta.\\ ~~~~ \\ \angle~AOB=150. ~~~~OA=OB=r.\\ So~in~isosceles~\Delta~OAB,~~ \angle~BAO=\dfrac{180-150} 2=15.\\ ~~~\\ So~\Delta~sides~AB=AC=say~S=2rCos15..........(1)\\ \therefore~\angle~OAD=60-15=45.\\ But~in~\Delta~OAD,~OA=OD=r.\\ So~\angle~DOA=90,~~~and~~~AD=\sqrt 2 r........(2).\\ ~~~\\ But~AD=AC- \sqrt r= 2rCos15-\sqrt r....By~(1)\\ So~ \sqrt 2 r= 2rCos15-\sqrt r. \\ Solving~r=3.7321.\\ ~~\\ Area~\Delta~BDF=1/2*\sqrt r*FB*Sin120\\ \because~of~symmetry~FB=AD=\sqrt 2 r\\ So~area~=\Large~\color{#D61F06}{~4.41515}.

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...