An Arrowhead

Geometry Level 4

A C = 25 , A B = 36 , C B = 29 , E D A B AC = 25, AB = 36, CB=29, ED \perp AB . The two small circles are congruent. If the radius of the large circle, R = p q R = \frac{p}{q} , where p p and q q are coprime positive integers, submit p + q p + q .


The answer is 71.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

David Vreken
Apr 1, 2021

Draw in the following segments:

A B C \triangle ABC is a 15 15 - 20 20 - 25 25 right triangle combined with a 20 20 - 21 21 - 29 29 right triangle, so that A H = 15 AH = 15 , C H = 20 CH = 20 , A C = 25 AC = 25 , B H = 21 BH = 21 , and B C = 29 BC = 29 .

Let G C = x GC = x , so that A G = A C G C = 25 x AG = AC - GC = 25 - x . Since A D G C F G A H C \triangle ADG \sim \triangle CFG \sim \triangle AHC by AA similarity, F G = C H A C G C = 4 5 x FG = \cfrac{CH}{AC} \cdot GC = \cfrac{4}{5}x , F C = A H A C G C = 3 5 x FC = \cfrac{AH}{AC} \cdot GC = \cfrac{3}{5}x , G D = C H A C A G = 4 5 ( 25 x ) GD = \cfrac{CH}{AC} \cdot AG = \cfrac{4}{5}(25 - x) , and A D = A H A C A G = 3 5 ( 25 x ) AD = \cfrac{AH}{AC} \cdot AG = \cfrac{3}{5}(25 - x) .

Since E F C C H B \triangle EFC \sim \triangle CHB by AA similarity, E F = C H H B F C = 4 7 x EF = \cfrac{CH}{HB} \cdot FC = \cfrac{4}{7}x and E C = C B H B F C = 29 35 x EC = \cfrac{CB}{HB} \cdot FC = \cfrac{29}{35}x , which means E G = E F + F G = 4 7 x + 4 5 x = 48 35 x EG = EF + FG = \cfrac{4}{7}x + \cfrac{4}{5}x = \cfrac{48}{35}x .

The inradius of right A D G \triangle ADG is r 1 = 1 2 ( A D + G D A G ) = 1 2 ( 3 5 ( 25 x ) + 4 5 ( 25 x ) ( 25 x ) ) = 1 5 ( 25 x ) r_1 = \cfrac{1}{2}(AD + GD - AG) = \cfrac{1}{2}\bigg(\cfrac{3}{5}(25 - x) + \cfrac{4}{5}(25 - x) - (25 - x)\bigg) = \cfrac{1}{5}(25 - x) .

And the inradius of E G C \triangle EGC is r 2 = 2 1 2 E G F C E G + E C + G C = 2 1 2 48 35 x 3 5 x 48 35 x + 29 35 x + x = 9 35 x r_2 = \cfrac{2 \cdot \frac{1}{2} \cdot EG \cdot FC}{EG + EC + GC} = \cfrac{2 \cdot \frac{1}{2} \cdot \frac{48}{35}x \cdot \frac{3}{5}x}{\frac{48}{35}x + \frac{29}{35}x + x} = \cfrac{9}{35}x .

Since the two small circles are congruent, r 1 = r 2 r_1 = r_2 , so 1 5 ( 25 x ) = 9 35 x \cfrac{1}{5}(25 - x) = \cfrac{9}{35}x , which solves to x = 175 16 x = \cfrac{175}{16} .

Then:

D B = A B A D = 36 3 5 ( 25 x ) = 36 3 5 ( 25 175 16 ) = 441 16 DB = AB - AD = 36 - \cfrac{3}{5}(25 - x) = 36 - \cfrac{3}{5}\bigg(25 - \cfrac{175}{16}\bigg) = \cfrac{441}{16}

E D = E G + G D = 48 35 x + 4 5 ( 25 x ) = 48 35 175 16 + 4 5 ( 25 175 16 ) = 105 4 ED = EG + GD = \cfrac{48}{35}x + \cfrac{4}{5}(25 - x) = \cfrac{48}{35} \cdot \cfrac{175}{16} + \cfrac{4}{5}\bigg(25 - \cfrac{175}{16}\bigg) = \cfrac{105}{4}

E B = E C + C B = 29 35 x + 29 = 29 35 175 16 + 29 = 609 16 EB = EC + CB = \cfrac{29}{35}x + 29 = \cfrac{29}{35} \cdot \cfrac{175}{16} + 29 = \cfrac{609}{16}

That means the inradius of E D B \triangle EDB is R = 1 2 ( D B + E D E B ) = 1 2 ( 441 16 + 105 4 609 16 ) = 63 8 R = \cfrac{1}{2}(DB + ED - EB) = \cfrac{1}{2}\bigg(\cfrac{441}{16} + \cfrac{105}{4} - \cfrac{609}{16}\bigg) = \cfrac{63}{8} .

Therefore, p = 63 p = 63 , q = 8 q = 8 , and p + q = 71 p + q = \boxed{71} .

First we find that altitude C N = 20 CN = 20 , A N = 15 AN=15 , and N B = 21 NB = 21 . Then A C N \triangle ACN is a 3 3 - 4 4 - 5 5 right triangle and B C N \triangle BCN , a 20 20 - 21 21 - 29 29 right triangle.

Let A D = x AD = x . Then D F = 4 3 x DF = \dfrac 43 x , where F F is the intersection point of A C AC and D E DE , and A F = 5 3 x AF = \frac 53 x . Since inradius of a triangle, r = A s r = \dfrac As , where A A and s s are the area and semi-perimeter of the triangle, then the radius of the two congruent circles

r = A D D F A D + D F + F A = 4 3 x 2 x ( 1 + 4 3 + 5 3 ) = x 3 r = \frac {AD \cdot DF}{AD+DF+FA} = \frac {\frac 43 x^2}{x\left(1+\frac 43 + \frac 53 \right)} = \frac x3

Let C G CG be perpendicular to D E DE . Then C G = A N A D = 15 x CG = AN - AD = 15-x . Then C E = 29 ( 15 x ) 21 CE = \dfrac {29(15-x)}{21} , E G = 20 ( 15 x ) 21 EG = \dfrac {20(15-x)}{21} , G F = 4 ( 15 x ) 3 GF = \dfrac {4(15-x)}3 , and F C = 5 ( 15 x ) 3 FC = \dfrac {5(15-x)}3 . Then

r = C G E F C E + E F + F C = ( 15 x ) ( 20 21 + 4 3 ) 29 21 + 20 21 + 4 3 + 5 3 = 3 ( 15 x ) 7 x 3 = 3 ( 15 x ) 7 7 x = 135 9 x x = 135 16 r = \frac {CG \cdot EF}{CE+EF+FC} = \frac {(15-x)\left(\frac {20}{21}+\frac 43\right)}{\frac {29}{21}+\frac {20}{21}+\frac 43 + \frac 53} = \frac {3(15-x)}7 \\ \begin{aligned} \frac x3 & = \frac {3(15-x)}7 \\ 7x & = 135 - 9x \\ \implies x & = \frac {135}{16} \end{aligned}

Then the radius of the large circle,

R = D E B D B D + D E + E B = ( 36 x ) 20 21 1 + 20 21 + 29 21 = 63 8 \begin{aligned} R & = \frac {DE \cdot BD}{BD+DE+EB} = \frac {(36-x) \cdot \frac {20}{21}}{1+\frac {20}{21}+\frac {29}{21}} = \frac {63}8 \end{aligned}

Therefore p + q = 63 + 8 = 71 p+q = 63+8 = \boxed{71} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...