An algebra problem by Aira Thalca

Algebra Level 3

Consider the recurrence relation f ( 1 ) + f ( 2 ) + + f ( n ) = n 2 × f ( n ) f(1) + f(2) + \cdots + f(n) = n^2 \times f(n) for n = 2 , 3 , n=2, 3,\ldots with f ( 1 ) = 2016 f(1) = 2016 .

If the value of f ( 2016 ) f(2016) can be expressed as a b \dfrac ab , where a a and b b are coprime positive integers, find a + b a+b .


The answer is 2019.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Aira Thalca
Dec 27, 2016

The value of f ( 2 ) f(2) is

f ( 1 ) + f ( 2 ) = 4 × f ( 2 ) f(1) + f(2) = 4\times f(2)

2016 + f ( 2 ) = 4 × f ( 2 ) 2016 + f(2) = 4\times f(2)

3 × f ( 2 ) = 2016 3\times f(2) = 2016

f ( 2 ) = 2016 3 = 2016 1 + 2 f(2) = \frac{2016}{3} = \frac{2016}{1+2}

The value of f ( 3 ) f(3) is

f ( 1 ) + f ( 2 ) + f ( 3 ) = 9 × f ( 3 ) f(1) + f(2) + f(3) = 9\times f(3)

2016 + f ( 2 ) + f ( 3 ) = 9 × f ( 3 ) 2016 + f(2) + f(3) = 9\times f(3)

8 × f ( 2 ) = 2016 + 2016 3 8\times f(2) = 2016 + \frac{2016}{3}

f ( 3 ) = 2016 6 = 2016 1 + 2 + 3 f(3) = \frac{2016}{6} = \frac{2016}{1+2+3}

So,

f ( x ) = 2016 1 + 2 + . . . + n f(x) = \frac{2016}{1 + 2 + ... + n}

Then given

f ( 2016 ) = 2016 × 2 2016 × 2017 f(2016) = \frac{2016\times 2}{2016\times 2017}

f ( 2016 ) = 2 2017 f(2016) = \frac{2}{2017}

Then given

a + b = 2 + 2017 = 2019 a + b = 2 + 2017 = 2019

Om telolet ommmm

I Gede Arya Raditya Parameswara - 4 years, 5 months ago

Did the same way haha

I Gede Arya Raditya Parameswara - 4 years, 5 months ago
James Pohadi
Dec 29, 2016

f ( 1 ) + f ( 2 ) + + f ( n 1 ) = ( n 1 ) 2 × f ( n 1 ) \color{#3D99F6}{f(1) + f(2) + \cdots + f(n-1) = (n-1)^{2} \times f(n-1)}

f ( 1 ) + f ( 2 ) + + f ( n 1 ) + f ( n ) = n 2 × f ( n ) ( n 1 ) 2 × f ( n 1 ) + f ( n ) = n 2 × f ( n ) ( n 1 ) 2 × f ( n 1 ) = ( n 2 1 ) × f ( n ) ( n 1 ) × f ( n 1 ) = ( n + 1 ) × f ( n ) f ( n ) = n 1 n + 1 × f ( n 1 ) f ( n ) = n 1 n + 1 × n 2 n × n 3 n 1 × × 3 5 × 2 4 × 1 3 × 2016 f ( n ) = 2 n ( n + 1 ) × 2016 \begin{aligned} \color{#3D99F6}{f(1) + f(2) + \cdots + f(n-1)} \color{#333333}{+ f(n)} & = n^2 \times f(n) \\ \color{#3D99F6}{(n-1)^{2} \times f(n-1)} \color{#333333}{+ f(n)} & = n^2 \times f(n) \\ (n-1)^{2} \times f(n-1)& = (n^2-1) \times f(n) \\ (n-1) \times f(n-1)& = (n+1) \times f(n) \\ f(n)&=\dfrac{n-1}{n+1} \times f(n-1) \\ f(n)&=\dfrac{\cancel{n-1}}{n+1} \times \dfrac{\cancel{n-2}}{n} \times \dfrac{\cancel{n-3}}{\cancel{n-1}} \times \cdots \times \dfrac{ \cancel{3}}{\cancel{5}} \times \dfrac{2}{\cancel{4}} \times \dfrac{1}{\cancel{3}} \times 2016\\ f(n)&=\dfrac{2}{n(n+1)} \times 2016 \end{aligned}

Putting n = 2017 n=2017

f ( 2016 ) = 2 2016 ( 2016 + 1 ) × 2016 f ( 2016 ) = 2 2017 \begin{aligned} f(2016)&=\dfrac{2}{2016(2016+1)} \times 2016 \\ f(2016)&=\dfrac{2}{2017} \end{aligned}

a = 2 , b = 2017 . a + b = 2 + 2017 = 19 a=2 \text{, } b=2017 \text{. }a+b=2+2017=\boxed{19}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...