an easy binomial

Algebra Level 3

k = 0 100 k k + 1 ( 100 k ) = 2 100 x + y z \large \sum_{k=0}^{100} \frac k{k+1} \binom {100}k = \frac {2^{100}x+y}z

The equation above holds true for x , y , z N x, y, z \in \mathbb N . Find x y z xyz .


The answer is 9999.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Atman Kar
Apr 19, 2018

Did the same

A Former Brilliant Member - 3 years, 1 month ago

Using the binomial theorem as follows:

k = 0 n ( n k ) u k = ( 1 + u ) n Differentiate both sides w.r.t. u k = 0 n k ( n k ) u k 1 = n ( 1 + u ) n 1 Multiply both sides by u k = 0 n k ( n k ) u k = n u ( 1 + u ) n 1 Integrate both sides w.r.t. u k = 0 n k k + 1 ( n k ) u k + 1 = u ( 1 + u ) n ( 1 + u ) n d u By integration by parts. = u ( 1 + u ) n ( 1 + u ) n + 1 n + 1 + C where C is the constant of integration. = u ( 1 + u ) n ( 1 + u ) n + 1 n + 1 + 1 n + 1 when u = 0 C = 1 n + 1 = ( 1 + u ) n ( u ( n + 1 ) ( 1 + u ) ) + 1 n + 1 = ( 1 + u ) n ( n u 1 ) + 1 n + 1 Put u = 1 k = 0 n k k + 1 ( n k ) = 2 n ( n 1 ) + 1 n + 1 Put n = 100 k = 0 100 k k + 1 ( 100 k ) = 2 100 ( 99 ) + 1 101 \begin{aligned} \sum_{k=0}^n \binom nk u^k & = (1+u)^n & \small \color{#3D99F6} \text{Differentiate both sides w.r.t. }u \\ \sum_{k=0}^n k \binom nk u^{k-1} & = n(1+u)^{n-1} & \small \color{#3D99F6} \text{Multiply both sides by }u \\ \sum_{k=0}^n k \binom nk u^k & = nu(1+u)^{n-1} & \small \color{#3D99F6} \text{Integrate both sides w.r.t. }u \\ \sum_{k=0}^n \frac k{k+1} \binom nk u^{k+1} & = \color{#3D99F6} u(1+u)^n - \int (1+u)^n du & \small \color{#3D99F6} \text{By integration by parts.} \\ & = u(1+u)^n - \frac {(1+u)^{n+1}}{n+1} + \color{#3D99F6} C & \small \color{#3D99F6} \text{where }C \text{ is the constant of integration.} \\ & = u(1+u)^n - \frac {(1+u)^{n+1}}{n+1} + \color{#3D99F6} \frac 1{n+1} & \small \color{#3D99F6} \text{when }u=0 \implies C = \frac 1{n+1} \\ & = \frac {(1+u)^n(u(n+1) - (1+u)) + 1}{n+1} \\ & = \frac {(1+u)^n(nu - 1) + 1}{n+1} & \small \color{#3D99F6} \text{Put }u=1 \\ \sum_{k=0}^n \frac k{k+1} \binom nk & = \frac {2^n(n - 1) + 1}{n+1} & \small \color{#3D99F6} \text{Put }n=100 \\ \sum_{k=0}^{100} \frac k{k+1} \binom {100}k & = \frac {2^{100}(99) + 1}{101} \end{aligned}

Therefore, x y z = 99 × 1 × 101 = 9999 xyz = 99 \times 1 \times 101 = \boxed{9999} .

Lucas Machado
Mar 1, 2018

N(x+1)^(n-1)+(x+1)^n×x+1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...