A calculus problem by Agni Purani

Calculus Level 2

I = 1 π 0 2 π e cos θ cos ( sin θ ) d θ I = \frac{1}{\pi }\int_{0}^{2\pi}e^{\cos\theta }\cos(\sin\theta )\ d\theta

Find I \lfloor I\rfloor .

Notation: \lfloor \cdot \rfloor denotes the floor function .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Agni Purani
Jan 24, 2019

Let J = 1 π 0 2 π e cos θ i sin ( sin θ ) d θ J = \frac{1}{\pi }\int_{0}^{2\pi}e^{\cos\theta }i\sin(\sin\theta) d\theta

I + J = 1 π 0 2 π e cos θ ( cos ( sin θ ) + i sin ( sin θ ) ) d θ I + J = \frac{1}{\pi }\int_{0}^{2\pi}e^{\cos\theta }(\cos(\sin\theta ) +i\sin(\sin\theta)) d\theta

I + J = 1 π 0 2 π e cos θ e i sin θ \Rightarrow I + J = \frac{1}{\pi }\int_{0}^{2\pi}e^{\cos\theta }e^{i\sin\theta }

I + J = 1 π 0 2 π e cos θ + i sin θ \Rightarrow I + J = \frac{1}{\pi }\int_{0}^{2\pi}e^{\cos\theta + i\sin\theta }

I + J = 1 π 0 2 π ( 1 + ( cos θ + i sin θ ) + ( cos θ + i sin θ ) 2 2 ! + . . . . ) \Rightarrow I + J = \frac{1}{\pi }\int_{0}^{2\pi} \left ( 1 + (\cos\theta + i\sin\theta) + \frac{(\cos\theta + i\sin\theta)^{2}}{2!} + .... \right)

and we now know that I = R e ( I + J ) I = Re( I + J)

I = [ 1 π ( θ + sin θ + sin 2 θ 2 × 2 ! + . . . . ) ] 0 2 π \therefore I = \left [ \frac{1}{\pi } \left ( \theta + \sin\theta + \frac{\sin2\theta}{2 \times 2!} + .... \right) \right ]_{0}^{2\pi}

I = 1 π ( 2 π ) = 2 \Rightarrow I = \frac{1}{\pi }(2\pi) = \boxed{2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...