A Combo-Limit+Sum

Calculus Level 5

Let J ( n ) = lim x 0 ( 1 ( ln ( 1 + x ) ) n 1 ( x x 2 2 + x 3 3 + ( 1 ) n + 1 x n n ) n ) J(n)=\lim_{x\to 0} \Bigg(\frac {1}{(\ln (1+x))^n} -\frac {1}{\Big(x-\frac {x^2}{2}+\frac {x^3}{3}-\cdots +\frac {(-1)^{n+1} x^n}{n}\Big)^n}\Bigg)

Also A = n = 1 J ( n ) n 2 \displaystyle A=\sum_{n=1}^{\infty} \frac {J(n)}{n^2} And R = n = 1 J ( n ) n ! \displaystyle R=\sum_{n=1}^{\infty} \frac {J(n)}{n!}

Now let R + A = K ln H N S R+A=K\ln H -\frac {N}{S}

Where K , H , N K, H, N are positive integers, H H is a prime number, while S S is a non negative real number

Find N + K + S + H N+K+S+H


The answer is 8.718.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Julian Poon
Apr 1, 2019

Let f = ln ( 1 + x ) f = \ln(1+x) and let f n f_n be the sum of the first n n terms of the maclaurin expansion of f f . Do note that when I use f ( n ) f^{(n)} , it means the nth derivative of f f , and when I use f n f^n , it means the nth exponent of f f . The question requires for J ( n ) = lim x 0 1 f n 1 f n n = lim x 0 j ( n , x ) \displaystyle J(n) = \lim_{x \rightarrow 0} \frac{1}{f^n}-\frac{1}{f_n^n} = \lim_{x \rightarrow 0} j(n,x) .

j ( n , x ) = 1 f n 1 f n n = f n n f n f n f n n = ( f n f ) ( j = 0 n 1 f n j n f 1 j ) = ( f ( n + 1 ) ( a ) ( n + 1 ) ! x n + 1 ) ( j = 1 n 1 ln ( 1 + x ) j f n n + 1 j ) \begin{aligned} j(n,x) &= \frac{1}{f^n}-\frac{1}{f_n^n}=\frac{f_n^n-f^n}{f^nf_n^n}=\left(f_n-f\right)\left(\sum_{j=0}^{n-1}f_n^{j-n}\ f^{-1-j}\right) \\ &= -\left(\frac{f^{(n+1)}(a)}{(n+1)!}x^{n+1}\right) \left(\sum_{j=1}^n\frac{1}{\ln(1+x)^j f_n^{n+1-j}}\right) \end{aligned}

Where a a is some real, 0 a x 0 \le a \le x . I used f f n = f ( n + 1 ) ( a ) ( n + 1 ) ! x n + 1 f - f_n = \frac{f^{(n+1)}(a)}{(n+1)!}x^{n+1} that follows from Taylor's Theorem , the Lagrange form of the remainder .

Hence

lim x 0 j ( n , x ) = lim x 0 f ( n + 1 ) ( a ) ( n + 1 ) ! x n + 1 ( j = 1 n 1 ln ( 1 + x ) j f n n + 1 j ) = f ( n + 1 ) ( 0 ) ( n + 1 ) ! lim x 0 j = 1 n x n + 1 ln ( 1 + x ) j f n n + 1 j = f ( n + 1 ) ( 0 ) ( n + 1 ) ! lim x 0 j = 1 n x n + 1 ln ( 1 + x ) n + 1 = n f ( n + 1 ) ( 0 ) ( n + 1 ) ! lim x 0 x n + 1 ln ( 1 + x ) n + 1 = n f ( n + 1 ) ( 0 ) ( n + 1 ) ! 1 n + 1 = ( 1 ) n + 1 n n + 1 \begin{aligned} \lim_{x \rightarrow 0} j(n,x) &= \lim_{x \rightarrow 0}-\frac{f^{(n+1)}(a)}{(n+1)!}x^{n+1}\left(\sum_{j=1}^n\frac{1}{\ln(1+x)^jf_n^{n+1-j}}\right) \\ &=- \frac{f^{(n+1)}(0)}{(n+1)!} \lim_{x \rightarrow 0} \sum_{j=1}^n\frac{x^{n+1}}{\ln(1+x)^jf_n^{n+1-j}} \\ &= -\frac{f^{(n+1)}(0)}{(n+1)!} \lim_{x \rightarrow 0} \sum_{j=1}^n\frac{x^{n+1}}{\ln(1+x)^{n+1}} \\ &= -\frac{n f^{(n+1)}(0)}{(n+1)!} \lim_{x \rightarrow 0} \frac{x^{n+1}}{\ln(1+x)^{n+1}} \\ &=- \frac{n f^{(n+1)}(0)}{(n+1)!} 1^{n+1} \\ &= \left(-1\right)^{n+1}\cdot\frac{n}{n+1} \end{aligned}

First line to second I used 0 a x 0 \le a \le x . From second to third I used how f n f_n behaves asymptotically the same as ln ( 1 + x ) \ln(1+x) when x x is close to 0 0 . Fourth to fifth I used L'Hopital .

Now the main problem has been solved. The rest follows suit. (See comments for details)

For presentation purposes, initial manipulation steps have been omitted

Calculation of A A :

A = j = 1 ( 1 ) j j ( j + 1 ) = j = 1 0 1 ( 1 ) j j x j d x = 0 1 j = 1 ( 1 ) j j x j d x = 0 1 ln ( 1 + x ) d x = 2 ln 2 1 \begin{aligned} A &= -\sum_{j=1}^{\infty}\frac{(-1)^j}{j(j+1)} \\ &= -\sum_{j=1}^{\infty} \int^1_0 \frac{(-1)^j}{j} x^j dx \\ &= - \int^1_0 \sum_{j=1}^{\infty} \frac{(-1)^j}{j} x^j dx \\ &= \int^1_0 \ln(1+x) dx \\ &= 2\ln2-1 \end{aligned}

Integral of ln x


Calculation of R R : R = j = 0 ( 1 ) j j ! 1 ( j + 2 ) = j = 0 0 1 ( 1 ) j j ! x j + 1 = 0 1 j = 0 ( 1 ) j j ! x j + 1 d x = 0 1 e x x d x = 1 2 e \begin{aligned} R &= \sum_{j=0}^{\infty}\frac{(-1)^j}{j!}\cdot\frac{1}{(j+2)} \\ &= \sum_{j=0}^{\infty} \int_0^1 \frac{(-1)^j}{j!} x^{j+1} \\ &= \int_0^1 \sum_{j=0}^{\infty} \frac{(-1)^j}{j!} x^{j+1} dx\\ &= \int_0^1 e^{-x} x dx\\ &= 1-\frac{2}{e} \end{aligned}

Julian Poon - 2 years, 2 months ago
Alex Burgess
Apr 1, 2019

Let p n ( x ) = x 2 + x 2 3 x 3 4 + . . . + ( 1 ) n + 1 x n 1 n p_n(x) = \frac{-x}{2} + \frac{x^2}{3} - \frac{-x^3}{4} + ... + \frac{(-1)^{n+1}x^{n-1}}{n} , such that, 1 ( x ( p n ( x ) ) ) n = R H S \frac{1}{(x(p_n(x)))^n}= RHS .

J ( n ) = lim x 0 ( 1 ( x p n ( x ) + ( 1 ) n + 2 x n + 1 n + 1 + x n + 2 q n ( x ) ) n 1 ( x ( p n ( x ) ) ) n ) J(n) = \lim_{x\to0} \left( \frac{1}{\left(xp_n(x) + \frac{(-1)^{n+2}x^{n+1}}{n+1} + x^{n+2}q_n(x)\right)^n} - \frac{1}{(x(p_n(x)))^n} \right) , where q n ( x ) q_n(x) is a polynomial. J ( n ) = lim x 0 1 x n x n + 1 P n ( x ) + n x n 1 ( 1 ) n + 2 x n + 1 n + 1 x 2 n + 1 Q n ( x ) 1 x n x n + 1 P n ( x ) J(n) = \lim_{x\to0} \frac{1}{x^n - x^{n+1}P_n(x) + nx^{n-1} \frac{(-1)^{n+2}x^{n+1}}{n+1} - x^{2n+1}Q_n(x)} - \frac{1}{x^n - x^{n+1}P_n(x)} , for appropriate polynomials P n ( x ) , Q n ( x ) P_n(x), Q_n(x) . J ( n ) = lim x 0 1 x n ( ( 1 + ( x P n ( x ) n ( 1 ) n + 2 x n n + 1 + x n + 1 Q n ( x ) ) + ( x P n ( x ) + . . . ) 2 + . . . ) ( 1 + ( x P n ( x ) ) + ( x P n ( x ) ) 2 + . . . ) ) J(n) = \lim_{x\to0} \frac{1}{x^n} \left( (1 + (xP_n(x) - n \frac{(-1)^{n+2}x^{n}}{n+1} + x^{n+1}Q_n(x) ) + (xP_n(x) + ... )^2 + ...) - (1 + (xP_n(x)) + (xP_n(x))^2 + ...) \right) . inside the brackets, everything of order x n x^n and below cancels, except n ( 1 ) n + 2 x n n + 1 - n \frac{(-1)^{n+2}x^{n}}{n+1} .


Essentially, the lowest order difference between the expansion of ln ( 1 + x ) \ln(1+x) and x p n ( x ) xp_n(x) is ( 1 ) n + 2 x n + 1 n + 1 \frac{(-1)^{n+2}x^{n+1}}{n+1} . This only affects the expansion at order x 2 n x^{2n} when taking it to the power of n n . Hence, as there is a common factor of x n x^n , this component is the difference between the reciprocals of the expansions at order 0 0 . All higher orders are ignored in the limit.

Hence, J ( n ) = n ( 1 ) n + 1 n + 1 J(n) = n \frac{(-1)^{n+1}}{n+1} .

A = n = 1 ( 1 ) n + 1 n ( n + 1 ) = lim x 1 n = 1 x n n ( n + 1 ) = lim x 1 ( n = 0 x n ) d x 2 = lim x 1 1 1 x d x 2 = lim x 1 log ( 1 x ) d x A = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n(n+1)} = \lim_{x\to -1} \sum_{n=1}^{\infty} \frac{x^n}{n(n+1)} = \lim_{x\to -1} \int \int \left( \sum_{n=0}^{\infty} x^n \right) dx^2 = \lim_{x\to -1} \int \int \frac{1}{1-x} dx^2 = \lim_{x\to -1} \int -\log(1-x) dx So, A = lim x 1 x ( x 1 ) log ( 1 x ) = 1 + 2 log ( 2 ) A = \lim_{x\to -1} x - (x-1)\log(1-x) = -1 + 2\log(2) .

R = n = 1 ( 1 ) n + 1 n ( n + 1 ) ! = lim x 1 n = 1 x n + 1 n ( n + 1 ) ! = lim x 1 n = 1 x 2 ( n x n 1 ( n + 1 ) ! = lim x 1 x 2 ( d d x e x x 1 x ) R = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}n}{(n+1)!} = \lim_{x\to -1} \sum_{n=1}^{\infty} \frac{x^{n+1}n}{(n+1)!} = \lim_{x\to -1} \sum_{n=1}^{\infty} x^2 (\frac{nx^{n-1}}{(n+1)!} = \lim_{x\to -1} x^2 (\frac{d}{dx} \frac{e^x}{x} - \frac{1}{x}) .

So R = lim x 1 x 2 ( e x x e x x 2 + 1 x 2 ) = lim x 1 x e x e x + 1 = 1 2 e R= \lim_{x\to -1} x^2 (\frac{e^x}{x} - \frac{e^x}{x^2} + \frac{1}{x^2} ) = \lim_{x\to -1} xe^x - e^x + 1 = 1 - \frac{2}{e} .

Hence, A + R = 2 log ( 2 ) 2 e A + R = 2\log(2) - \frac{2}{e} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...