An easy limit?

Calculus Level 2

Find the limit:


The answer is 42.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

By using L'Hopital's Rule:

lim x 0 7 x 3 x sin x = lim x 0 21 x 2 1 cos x = lim x 0 42 x sin x = lim x 0 42 cos x = 42 \lim_{x \rightarrow 0} \frac{7x^3}{x-\sin x} = \lim_{x \rightarrow 0} \frac{21x^2}{1-\cos x} = \lim_{x \rightarrow 0} \frac{42x}{\sin x} = \lim_{x \rightarrow 0} \frac{42}{\cos x} = 42

Arjen Vreugdenhil
Sep 18, 2015

Series expansion of sine function near x = 0 x = 0 : sin x = x 1 6 x 3 + + ( ) n ( 2 n + 1 ) ! x 2 n + 1 + \sin x = x - \frac{1}{6}x^3 + \cdots + \frac{(-)^n}{(2n+1)!}x^{2n+1}+\cdots Thus, lim x 0 7 x 3 x sin x = lim x 0 7 x 3 1 6 x 3 + O ( x 5 ) = 7 6 = 42. \lim_{x\to0}\frac{7x^3}{x-\sin x}=\lim_{x\to0}\frac{7x^3}{\frac{1}{6}x^3+O(x^5)}=7\cdot 6 = 42.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...