An easy one so, Find it if you can.-

Geometry Level 5

The curve x 2 x^{2} - y 2 y^{2} = 5 and x 2 18 \frac{ x^{2}}{18} + y 2 8 \frac{y^{2}}{8} = 1 cut each other at an angle α degrees.
Then find 3 2 \frac {3}{2} tan α 6 \frac{α}{6} .

Find more here


The answer is 0.402.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

It is given that:

{ x 2 y 2 = 5 . . . ( 1 ) x 2 18 + y 2 8 = 1 . . . ( 2 ) \begin{cases} x^2-y^2 = 5 & ...(1) \\ \dfrac {x^2}{18} + \dfrac {y^2}{8} = 1 & ...(2)\end{cases}

\(\begin{array} {} Eq.1+8\times Eq.2: & x^2-y^2 + \dfrac {4x^2}{9} + y^2 = 5+8 \\ & \Rightarrow \dfrac {13x^2}{9} = 13\quad \Rightarrow x^2 = 9 \quad \Rightarrow x = \pm 3 \\ & \Rightarrow 9-y^2 = 5 \quad \Rightarrow y^2 = 4 \quad \Rightarrow y = \pm 2 \end{array} \)

Since the two curves are symmetrical to the origin O ( 0 , 0 ) O(0,0) , we need only consider one of the four points ( 3 , 2 ) , ( 3 , 2 ) , ( 3 , 2 ) , ( 3 , 2 ) (-3,-2),(-3,2),(3,-2),(3,2) for angle α \alpha . Let us consider the point ( 3 , 2 ) (3,2) .

Let us consider the gradient of the two curves at point ( 3 , 2 ) (3,2) :

{ x 2 y 2 = 5 2 x 2 y d y d x = 0 m 1 = d y d x = x y = 3 2 . . . ( 1 a ) x 2 18 + y 2 8 = 1 x 9 + y 4 d y d x = 0 m 2 = d y d x = 4 x 9 y = 12 18 = 2 3 . . . ( 2 a ) \begin{cases} x^2-y^2 = 5 &\Rightarrow 2x-2y\dfrac{dy}{dx} =0 \\ &\Rightarrow m_1 = \dfrac{dy}{dx} = \dfrac {x}{y} = \dfrac {3}{2} & ...(1a) \\ \dfrac {x^2}{18} + \dfrac {y^2}{8} = 1 &\Rightarrow \dfrac{x}{9}+\dfrac {y}{4} \dfrac{dy}{dx} =0 \\ &\Rightarrow m_2 = \dfrac{dy}{dx} = - \dfrac {4x}{9y} = - \dfrac {12}{18} = - \dfrac{2}{3} & ...(2a)\end{cases}

We note that m 1 m 2 = 3 2 ( 2 3 ) = 1 m_1m_2 = \frac {3}{2}\left( -\frac{2}{3} \right) = -1 , therefore the curves are tangent to each other at the points of intersection and hence α = 9 0 \alpha = 90^\circ .

Therefore, 3 2 tan α 6 = 3 2 tan 1 5 = 0.402 \frac {3}{2} \tan{\frac{\alpha}{6}} = \frac {3}{2} \tan {15^\circ} = \boxed{0.402}

Prakhar Bindal
Oct 2, 2015

Its The Direct Application Of The Following Property "If An Ellipse And A Hyperbola Are Confocal(They share common focii) Then they cut each other orthogonally".

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...