An easy one this time

Geometry Level 1

Letting P = sin A sin B Q = sin C cos A R = sin A cos B S = cos A cos C P=\sin A \sin B \\ Q= \sin C \cos A \\ R = \sin A \cos B \\ S=\cos A \cos C

Find the value of 5 ( P 2 + Q 2 + R 2 + S 2 ) 5(P^2+Q^2+R^2+S^2) .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Nihar Mahajan
Jul 18, 2015

5 ( P 2 + Q 2 + R 2 + S 2 ) = 5 ( sin 2 A sin 2 B + sin 2 C cos 2 A + sin 2 A cos 2 B + cos 2 A cos 2 C ) = 5 ( sin 2 A sin 2 B + sin 2 A cos 2 B + sin 2 C cos 2 A + cos 2 A cos 2 C ) = 5 [ sin 2 A ( s i n 2 B + cos 2 B ) + cos 2 A ( s i n 2 C + cos 2 C ) ] = 5 ( sin 2 A + cos 2 A ) = 5 5(P^2+Q^2+R^2+S^2) \\ =5(\sin^2 A \sin^2 B + \sin^2 C\cos^2 A + \sin^2 A \cos^2 B + \cos^2 A \cos^2 C) \\ = 5(\sin^2 A \sin^2 B + \sin^2 A\cos^2 B + \sin^2 C \cos^2 A + \cos^2 A \cos^2 C) \\ = 5[\sin^2 A(sin^2 B + \cos^2 B) + \cos^2 A(sin^2 C + \cos^2 C)] \\ = 5 (\sin^2 A + \cos^2 A) \\ = \boxed{5}

I did the same, nice!

Mahdi Raza - 1 year, 4 months ago
Siddharth Singh
Jul 18, 2015

Substituting the values of P,Q,R and S.

5 ( s i n 2 A . sin 2 B + sin 2 C . cos 2 A + sin 2 A . cos 2 B + cos 2 A . cos 2 C ) 5(sin^{ 2 }{ A }.\sin ^{ 2 }{ B } +\sin ^{ 2 }{ C } .\cos ^{ 2 }{ A } +\sin ^{ 2 }{ A } .\cos ^{ 2 }{ B } +\cos ^{ 2 }{ A } .\cos ^{ 2 }{ C } )

5 [ sin 2 A ( sin 2 B + cos 2 B ) + cos 2 A ( sin 2 C + cos 2 C ) ] 5[\sin ^{ 2 }{ A } (\sin ^{ 2 }{ B } +\cos ^{ 2 }{ B } )+\cos ^{ 2 }{ A } (\sin ^{ 2 }{ C } +\cos ^{ 2 }{ C } )]

5 [ 1 ] = 5 5[1]=\boxed{5}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...