Geometry -- 1

Geometry Level 3

Knowing a a and b b are unit vectors that form an angle of 6 0 60^{\circ } , then what does a + 3 b |a + 3b| equals to?

√(13) 2√(3) √(10) 4

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Kevin Xu
Aug 25, 2019

Let a = cos α , sin α a = |\cos \alpha, \sin \alpha| , b = cos β , sin β b= |\cos \beta, \sin \beta| \\ a + 3 b = cos α + 3 cos β , sin α + 3 sin β a + 3b = |\cos \alpha + 3\cos \beta, \sin \alpha + 3 \sin \beta| \\ a + 3 b = cos 2 α + 9 cos 2 β + 6 cos α cos β + sin 2 α + 9 sin 2 β + 6 sin α sin β |a + 3b| = \sqrt {\cos^2 \alpha + 9\cos^2 \beta + 6\cos \alpha \cos \beta + \sin^2 \alpha + 9\sin^2 \beta + 6 \sin \alpha \sin \beta} \\ a + 3 b = 1 + 6 cos ( α β ) = 13 |a + 3b| = \sqrt {1- + 6\cos (\alpha - \beta)} = \sqrt {13}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...