Seven Eleven

Find the remainder when 1 1 1 1 11 \large11^{11^{11}} is divided by 7 7 .

5 1 2 6

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Discussions for this problem are now closed

Yang Cheng
Dec 11, 2014
  1. Note that 1 1 3 1 ( m o d 7 ) \quad11^3 \equiv 1 \pmod{7}

  2. 1 1 11 ( 1 ) 11 2 ( m o d 3 ) 1 1 11 = 3 n + 2 11^{11} \equiv (-1)^{11} \equiv 2 \pmod{3} \Longrightarrow \boxed {11^{11}=3n+2 }

  3. 1 1 11 11 1 1 3 n + 2 ( 1 1 3 ) n 1 1 2 1 n 2 2 ( m o d 7 ) 11^{{11}^{11}} \equiv 11^{3n+2} \equiv (11^3)^n \cdot 11^2 \equiv 1^n \cdot 2 \equiv 2 \pmod{7}

What is the (-1)^11 for in the second step??

Chiew KSeng - 6 years, 5 months ago

It's just a step of calculating

11 1 ( m o d 3 ) 1 1 11 ( 1 ) 11 1 2 ( m o d 3 ) 11 \equiv -1 \pmod{3} \\ 11^{11} \equiv (-1)^{11} \equiv -1 \equiv 2 \pmod{3}

Sorry if it's unnecessary... I'm new to modular arithmetic :)

Yang Cheng - 6 years, 5 months ago
Kartik Sharma
Dec 9, 2014

11 11 11 {11}^{{11}^{11}}

applying fermat's little theorem,

a p 1 1 ( m o d p ) {a}^{p-1} \equiv 1 \pmod{p}

a 6 1 ( m o d 7 ) {a}^{6} \equiv 1 \pmod{7}

Hence, a = 11 will work too.

11 6 1 ( m o d 7 ) {11}^{6} \equiv 1 \pmod{7}

So, we may find 11 11 m o d 6 {11}^{11} mod 6

11 11 5 ( m o d 6 ) {11}^{11} \equiv 5 \pmod{6}

11 6 q + 5 = ( 11 6 q ) ( 11 5 ) {11}^{6q + 5} = ({11}^{6q})({11}^{5})

11 5 2 ( m o d 7 ) {11}^{5} \equiv 2 \pmod{7} [As 11 6 q 1 ( m o d 7 ) {11}^{6q} \equiv 1 \pmod{7} ]

Anna Anant
Dec 15, 2014

The answer is 2 N=(11^11)^11 = [(7+4)^11]^11 = 7A + 4^11^11 = 7A + 4^11^11

the remainder when N is divided by 7 is the same remainder when 4^11^11 is divided by 7.

we have: 4^0=1(mod7) 4^1=4(mod7) 4^2=2(mod7) 4^3=1(mod7) so 4^n=1(mod7) if n=3k and =4(mod7) if n=3k+1 and =2(mod7) if n=3k+2. now we have to write 11^11 as a modulo of number 3 11^0=1=1mod3 11^1=11=2mod3 11^2=121=1mod3 so 11^n=1mod3 if n is pair and =2mod3 if n is odd 11 is an odd number so 11^11=2mod3 then 4^11^11 = 2(mod7) because 11^11= 3K+2

the remainder when N is divided by 7 is 2

That made me really tired

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...