Not Riemann Zeta Function

Algebra Level 2

i = 1 2 i + 1 i 2 ( i + 1 ) 2 = ? \large \displaystyle \sum_{i=1}^\infty \frac {2i+1}{i^2 (i+1)^2} = \ ?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Lawrence Bush
Aug 6, 2014

i = 1 2 i + 1 i 2 ( i + 1 ) 2 \sum\limits_{i=1}^{\infty} \frac{2i+1}{i^2(i+1)^2} =

i = 1 i 2 + 2 i + 1 i 2 ( i + 1 ) 2 i 2 i 2 ( i + 1 ) 2 \sum\limits_{i=1}^{\infty} \frac{i^2+2i+1}{i^2(i+1)^2}-\frac{i^2}{i^2(i+1)^2} =

i = 1 ( i + 1 ) 2 i 2 ( i + 1 ) 2 i 2 i 2 ( i + 1 ) 2 \sum\limits_{i=1}^{\infty} \frac{(i+1)^2}{i^2(i+1)^2}-\frac{i^2}{i^2(i+1)^2} =

i = 1 1 i 2 1 ( i + 1 ) 2 \sum\limits_{i=1}^{\infty} \frac{1}{i^2} - \frac{1}{(i+1)^2} . Notice that in our next summation the next term is going to be equal to our last term here and this pattern keeps going till infinity.Thus the value is :

i = 1 1 i 2 = \sum\limits_{i=1}^{\infty} \frac{1}{i^2} =

i = 1 1 1 2 = 1 \sum\limits_{i=1}^{\infty} \frac{1}{1^2}=\boxed{1} .

Perfect. :D

Sharky Kesa - 6 years, 10 months ago
Aareyan Manzoor
Nov 29, 2014

it is simple n = 1 ( 2 n + 1 ( n ( n + 1 ) ) 2 ) \sum_{n=1}^\infty (\frac{2n+1}{(n(n+1))^2}) n 1 ( 1 n ( n + 1 ) × 2 n + 1 n ( n + 1 ) ) \sum_{n-1}^\infty (\frac{1}{n(n+1)}\times \frac{2n+1}{n(n+1)}) n 1 ( 1 n 1 n + 1 ) ( 1 n + 1 n + 1 ) \sum_{n-1}^\infty (\frac{1}{n}-\frac{1}{n+1})(\frac{1}{n}+\frac{1}{n+1}) we know that ( a b ) ( a + b ) = a 2 b 2 (a-b)(a+b) =a^2 -b^2 so, n 1 ( 1 n 2 1 ( n + 1 ) 2 ) \sum_{n-1}^\infty (\frac{1}{n^2}-\frac{1}{(n+1)^2}) the values are 1 1 4 + 1 4 1 9 + 1 9 . . . . . . 1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}......\infty arrange them to 1 + ( 1 4 + 1 4 ) + ( 1 9 + 1 9 ) . . . . . . . 1+( -\frac{1}{4}+\frac{1}{4})+( -\frac{1}{9}+\frac{1}{9}).......\infty we get 1 \boxed{1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...