i = 1 ∑ ∞ i 2 ( i + 1 ) 2 2 i + 1 = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Perfect. :D
it is simple n = 1 ∑ ∞ ( ( n ( n + 1 ) ) 2 2 n + 1 ) n − 1 ∑ ∞ ( n ( n + 1 ) 1 × n ( n + 1 ) 2 n + 1 ) n − 1 ∑ ∞ ( n 1 − n + 1 1 ) ( n 1 + n + 1 1 ) we know that ( a − b ) ( a + b ) = a 2 − b 2 so, n − 1 ∑ ∞ ( n 2 1 − ( n + 1 ) 2 1 ) the values are 1 − 4 1 + 4 1 − 9 1 + 9 1 . . . . . . ∞ arrange them to 1 + ( − 4 1 + 4 1 ) + ( − 9 1 + 9 1 ) . . . . . . . ∞ we get 1
Problem Loading...
Note Loading...
Set Loading...
i = 1 ∑ ∞ i 2 ( i + 1 ) 2 2 i + 1 =
i = 1 ∑ ∞ i 2 ( i + 1 ) 2 i 2 + 2 i + 1 − i 2 ( i + 1 ) 2 i 2 =
i = 1 ∑ ∞ i 2 ( i + 1 ) 2 ( i + 1 ) 2 − i 2 ( i + 1 ) 2 i 2 =
i = 1 ∑ ∞ i 2 1 − ( i + 1 ) 2 1 . Notice that in our next summation the next term is going to be equal to our last term here and this pattern keeps going till infinity.Thus the value is :
i = 1 ∑ ∞ i 2 1 =
i = 1 ∑ ∞ 1 2 1 = 1 .