An Eight digit no.

An eight digit number divisible by 9 is to be formed by using digits 0,1,2,…9 without replacement . The number of ways in which this can be done is : If your answer is of the form ( a ) ! × ( b ) (a)! \times (b) Enter a+b.


The answer is 43.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

T h e {The} m a x i m u m {maximum} p o s s i b l e {possible} s u m {sum} o f {of} e i g h t {eight} d i g i t s {digits} = 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 44 2+ 3 + 4 + 5 + 6 + 7 + 8 + 9 = 44
T h e {The} m i n i m u m { minimum} p o s s i b l e { possible} s u m { sum} o f {of } e i g h t {eight} d i g i t s { digits} = 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28

F o r {For} t h e { the } n u m b e r {number} t o {to} b e { be} d i v i s i b l e { divisible} b y { by} 9 , { 9,} t h e { the} o n l y { only} p o s s i b l e { possible} s u m { sum} o f { of} t h e { the} d i g i t s { digits} i s { is} 36 36 .

I f { If } w e {we} p i c k {pick} t h e { the} s e t {set } o f {of} d i g i t s {digits} \Rightarrow { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 {1,2,3,4,5,6,7,8} }

T h e i r {Their} s u m {sum} = 36 36

T o t a l {Total} p e r m u t a t i o n s { permutations} = 8 ! 8!

N o w , {Now,} i f {if} w e {we} r e m o v e {remove} { 1 , 8 {1,8} } a n d { and} r e p l a c e {replace} t h e m { them} b y { by} { 0 , 9 {0,9} } t h e { the} s u m {sum} i s {is} s t i l l {still} 36 36 .

I n {In} t h i s {this} c a s e {case} t o t a l {total} p o s s i b l e {possible} p e r m u t a t i o n s {permutations} = 7 × ( 7 × 6 × 5 × 4 × 3 × 2 × 1 ) = 7 × 7 ! 7\times(7\times6\times5\times4\times3\times2\times1) = 7\times7!

S i m i l a r l y , { Similarly,} 3 {3} m o r e {more} c a s e s {cases} o c c u r , {occur,} w h e n {when} { 2 , 7 {2,7} } ,{ 3 , 6 {3,6} } { 4 , 5 {4,5} } a r e {are} r e p l a c e d {replaced} b y {by} { 0 , 9 {0,9} }.

. : {.:} T o t a l {Total} n u m b e r s {numbers} d i v i s i b l e {divisible} b y {by} 9 9 : 8 ! + 4 × ( 7 × 7 ! ) = 8 × 7 ! + 28 × 7 ! = 36 × 7 ! 8! + 4\times(7\times7!) = 8\times7! + 28\times7! = 36\times7!

C o m p a r i n g , a = 7 , b = 36 {Comparing},{a=7},{b= 36}

.: a + b = 43 a + b = 43

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...