An electricity and magnetism problem by Akshat Sharda

Consider a infinitely long wire along z z axis carrying current I I . If it is given that A ( a , 0 ) A(a,0) & B ( a , b ) B(a,b) and path A B AB is a straight line, then find the value of A B B . d l \int_{A}^{B} \vec{B} . d\vec{l} .

Details

A B B . d l \int_{A}^{B} \vec{B} . d\vec{l} denotes B . d l \int \vec{B}.d\vec{l} on path A B AB from A A to B B .

None of these. μ o I 2 π tan 1 ( a b ) \frac{\mu_{o}I}{2\pi} \tan^{-1}\left(\frac{a}{b}\right) 2 μ o I π tan 1 ( a b ) \frac{2\mu_{o}I}{\pi} \tan^{-1}\left(\frac{a}{b}\right) μ o I 2 π tan 1 ( b a ) \frac{\mu_{o}I}{2\pi} \tan^{-1}\left(\frac{b}{a}\right) μ o I π tan 1 ( b a ) \frac{\mu_{o}I}{\pi} \tan^{-1}\left(\frac{b}{a}\right)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

B ˉ = μ 0 I 2 π r e θ \bar{B} = \frac{\mu_0 I}{2\pi r} e_\theta ; d l ˉ = d y e y d\bar{l} = dy e_y

Converting B ˉ \bar{B} to cartesian coordinates with r = x 2 + y 2 r = \sqrt{x^2 + y^2} and e θ = y e x + x e y x 2 + y 2 e_\theta = \frac{-ye_x+xe_y}{\sqrt{x^2+y^2}}

Given integral becomes I = A B B ˉ d l ˉ = 0 b μ 0 I 2 π a 2 + y 2 a a 2 + y 2 d y = μ 0 I 2 π t a n 1 ( b a ) I = \int_A^B \bar{B}\cdot d\bar{l} = \int_0^b\frac{\mu_0 I}{2\pi \sqrt{a^2+y^2}} \frac{a}{\sqrt{a^2+y^2}} dy = \frac{\mu_0 I}{2\pi} tan^{-1}\left(\frac{b}{a}\right)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...