An electricity and magnetism problem by Tushar Gopalka

Find the current density as a function of distance r from the axis of a radially symmetrical parallel stream of electrons if the magnetic induction inside the stream varies as B = b r α B=b{ r }^{ \alpha } , where b, α \alpha are positive constants.

None of the above ( b ( 1 + α ) r α ) / μ 0 (b(1+\alpha ){ r }^{ \alpha })/{ \mu }_{ 0 } ( b ( 1 + α ) r α 1 ) / μ 0 (b(1+\alpha ){ r }^{ \alpha -1 })/{ \mu }_{ 0 } ( b α r α 1 ) / μ 0 (b\alpha { r }^{ \alpha -1 })/{ \mu }_{ 0 }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ronak Agarwal
Aug 4, 2014

By ampere's law we have :

B ( r ) ( 2 π r ) = μ 0 0 r J ( x ) d S = μ 0 0 r ( J ( x ) 2 π x ) d x B(r)(2\pi r)={ \mu }_{ 0} \int _{ 0 }^{ r }{ J(x)dS } ={ \mu }_{ 0 }\int _{ 0 }^{ r }{ (J(x)2\pi x)dx }

r B ( r ) = μ 0 0 r x J ( x ) d x \Rightarrow rB(r)={ \mu }_{ 0 }\int _{ 0 }^{ r }{ xJ(x)dx }

Applying newton's leibnit'z rule we have :

B ( r ) + r d B ( r ) d r = μ 0 r J ( r ) . B(r)+r\frac { dB(r) }{ dr } ={ \mu }_{ 0 }rJ(r).

Putting the values we have :

b r α + r ( α b r α 1 ) = μ 0 r J ( r ) b{ r }^{ \alpha }+r(\alpha b{ r }^{ \alpha -1 })={ \mu }_{ 0 }rJ(r)

b r α 1 ( α + 1 ) μ 0 = J ( r ) \Rightarrow \boxed { \frac { b{ r }^{ \alpha -1 }(\alpha +1) }{ { \mu }_{ 0 } } =J(r) }

I have done magnetism part of irodov

Ronak Agarwal - 6 years, 10 months ago

Awesome...Did it exactly the same way. Each and every step same. Do you know this is from Irodov?

Tushar Gopalka - 6 years, 10 months ago

Have you completed Irodov?

Tushar Gopalka - 6 years, 10 months ago

Log in to reply

Nope. I have have done till the magnetism part.

Ronak Agarwal - 6 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...