An Elliptical Problem

Geometry Level 5

If the normal at the end of latus rectum of the ellipse x 2 z 2 + y 2 b 2 = 1 \frac{x^{2}}{z^{2}} + \frac{y^{2}}{b^{2}} =1 passes through an extremity of minor axis ,

(1) Let e 4 + e 2 = J e^{4} + e^{2} = J
(2) Let the ratio of major and minor axes be be K .

[Where e is the eccentricity of the ellipse]

Evaluate J × K J \times K .

*Report the answer upto 2 places of decimal

You can try more of my Questions here .


The answer is 1.62.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ayush Verma
Mar 2, 2017

1 e 2 = b 2 a 2 1-{e}^2=\frac{b^2}{a^2} & d x d y = a 2 b 2 ( y x ) \frac{-dx}{dy}=\frac{a^2}{b^2}\left ( \frac{y}{x} \right )

Normal at E ( a e , b 2 a ) E(-ae,\frac{b^2}{a}) passes through D ( 0 , b ) D(0,-b)

b 2 a ( b ) a e 0 = ( d x d y ) E = a 2 b 2 . b 2 a a e = 1 e b 2 a 2 + b a = 1 ( 1 e 2 ) + 1 e 2 = 1 J = e 4 + e 2 = 1 e 2 = 5 1 2 & K = a b = 1 1 e 2 = 1 e 4 = 2 5 1 = 1.618 J × K = 1 × 1.618 \Rightarrow \cfrac { \cfrac { { b }^{ 2 } }{ a } -\left( -b \right) }{ -ae-0 } ={ \left( \cfrac { -dx }{ dy } \right) }_{ E }=\cfrac { { a }^{ 2 } }{ { b }^{ 2 } } .\cfrac { \cfrac { { b }^{ 2 } }{ a } }{ -ae } =\cfrac { -1 }{ e } \\ \\ \Rightarrow \quad \cfrac { { b }^{ 2 } }{ { a }^{ 2 } } +\cfrac { b }{ a } =1\quad \Rightarrow \quad \left( 1-{ e }^{ 2 } \right) +\sqrt { 1-{ e }^{ 2 } } =1\\ \\ \Rightarrow \quad J={ e }^{ 4 }+{ e }^{ 2 }=1\quad \Rightarrow \quad { e }^{ 2 }=\cfrac { \sqrt { 5 } -1 }{ 2 } \\ \\ \& \quad K=\cfrac { a }{ b } =\cfrac { 1 }{ \sqrt { 1-{ e }^{ 2 } } } =\cfrac { 1 }{ \sqrt { { e }^{ 4 } } } =\cfrac { 2 }{ \sqrt { 5 } -1 } =1.618\\ \\ \Rightarrow \quad J\times K=1\times 1.618

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...