An Exponent problem

Algebra Level 3

If 2 x = 3 y = 6 z 2^x = 3^y = 6^{-z} , then find the value of 1 x + 1 y + 1 z \dfrac1x + \dfrac1y + \dfrac1z .

Note: The case x = y = z = 0 x=y=z=0 is not be included.

1 1 3 2 \frac32 1 2 -\frac12 0 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

2 x = 3 y = 6 z 2^{x} = 3^{y} = 6^{-z}

2 = 6 z x 2 = 6^{\frac{-z}{x}}

3 = 6 z y 3 = 6^{\frac{-z}{y}}

2 × 3 = 6 z x × 6 z y 2 × 3 = 6^{\frac{-z}{x}} × 6^{\frac{-z}{y}}

6 1 = 6 z x × 6 z y 6^{1} = 6^{\frac{-z}{x}} × 6^{\frac{-z}{y}}

1 = z x + z y 1 = \frac{-z}{x} + \frac{-z}{y}

1 = z ( 1 x + 1 y 1 = -z (\frac{1}{x} + \frac{1}{y} )

1 z = 1 x + 1 y -\frac{1}{z} = \frac{1}{x} + \frac{1}{y}

1 x + 1 y + 1 z \frac{1}{x} + \frac{1}{y} +\frac{1}{z} = 1 z 1 z = \frac{1}{z} - \frac{1}{z} = 0 = 0

Sriteja Pradeep
May 24, 2016

let 2^x=3^y=6^-z=km,2=k^1/x,3=k^1/y,6=k^1/-z now, 2 3=6,k^1/x k^1/y=k^1/-z,k^(1/x+1/y)=k^1/z therefore,1/x+1/y=1/-z,1/x+1/y+1/z=0

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...