An Exponentially Little Christmas Present

Algebra Level 3

For n 0 n \ne 0 , given that x = 1 2 ( 3 1 / n 3 1 / n ) x = \dfrac12 \left( 3^{1/n} - 3^{-1/n} \right) , find the value of ( x + 1 + x 2 ) n \left(x + \sqrt{1+x^2} \right)^n .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Jonathan Alvaro
Dec 26, 2015

Plug in n = 1 and you get x=4/3. Plug both n and x into the second equation and you get the answer

Nice! Short and sweet!

Ponhvoan Srey - 5 years, 5 months ago
Ponhvoan Srey
Dec 23, 2015

x = 1 2 ( 3 1 n 3 1 n ) x 2 = 1 4 ( 3 2 n + 3 2 n 2 ) = 1 4 ( 3 2 n + 3 2 n ) 1 2 x 2 + 1 = 1 4 ( 3 2 n + 3 2 n ) + 1 2 = ( 1 2 ( 3 1 n + 3 1 n ) ) 2 x 2 + 1 = 1 2 ( 3 1 n + 3 1 n ) x + x 2 + 1 = 1 2 ( 3 1 n 3 1 n ) + 1 2 ( 3 1 n + 3 1 n ) x + x 2 + 1 = 3 1 n ( x + x 2 + 1 ) n = 3 \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad x=\frac { 1 }{ 2 } \left( { 3 }^{ \frac { 1 }{ n } }-{ 3 }^{ -\frac { 1 }{ n } } \right) \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad { x }^{ 2 }=\frac { 1 }{ 4 } \left( { 3 }^{ \frac { 2 }{ n } }{ +3 }^{ -\frac { 2 }{ n } }-2 \right) =\frac { 1 }{ 4 } \left( { 3 }^{ \frac { 2 }{ n } }{ +3 }^{ -\frac { 2 }{ n } } \right) -\frac { 1 }{ 2 } \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad { x }^{ 2 }+1=\frac { 1 }{ 4 } \left( { 3 }^{ \frac { 2 }{ n } }{ +3 }^{ -\frac { 2 }{ n } } \right) +\frac { 1 }{ 2 } ={ \left( \frac { 1 }{ 2 } \left( { 3 }^{ \frac { 1 }{ n } }+{ 3 }^{ -\frac { 1 }{ n } } \right) \right) }^{ 2 }\\ \quad \quad \quad \quad \quad \quad \quad \sqrt { { x }^{ 2 }+1 } =\quad \frac { 1 }{ 2 } \left( { 3 }^{ \frac { 1 }{ n } }+{ 3 }^{ -\frac { 1 }{ n } } \right) \\ \quad \quad \quad \quad \quad x+\sqrt { { x }^{ 2 }+1 } =\frac { 1 }{ 2 } \left( { 3 }^{ \frac { 1 }{ n } }-{ 3 }^{ -\frac { 1 }{ n } } \right) +\frac { 1 }{ 2 } \left( { 3 }^{ \frac { 1 }{ n } }+{ 3 }^{ -\frac { 1 }{ n } } \right) \quad \\ \quad \quad \quad \quad \quad x+\sqrt { { x }^{ 2 }+1 } ={ 3 }^{ \frac { 1 }{ n } }\\ \Rightarrow \boxed { { \left( x+\sqrt { { x }^{ 2 }+1 } \right) }^{ n }=3 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...